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Part I
Why?
In the writing of a limit

lim
x→a

f(x) = L

we will say "f(x) tends to L when x tends to a" but one of the difficultiesis that each part of the sentence is meaningless when considered alone; xcannot tend to a by itself. Similarly with "f(x) tends to L". The concept mustbe grasped in its entirety or not understood at all.For pre-university and introductory level, showing the full ε-δ definitioncertainly does not make things easier with δ depending on ε.Defining the derivative as the slope of the tangent leaves us with thedifficult task of defining the tangent before the derivative.For the integral, a sum of thin slices approximates the area but the limitwhen slices tend to a thickness of zero seems to imply that the area is a sumof zeroes.
These difficulties are well known to analysis teachers. Many avoid them byresorting to "hand waving" definitions and proofs where informally "approach-ing" is used, or "arbitrarily close". Mathematical rigour is then lost.Another way to circumvent the difficulty is to change the approach and usea version of nonstandard analysis – this is the choice we have made.Many difficulties disappear or become more palatable when using the con-cept of ultrasmall numbers. In particular, the limit is defined in such a waythat each part of the sentence has a meaning on its own – hence didactic andintellectual steps are smaller.
Most mathematicians have an intuitive idea of infinitesimals. These mentalrepresentations are often used to explain the fundamental concepts before rig-orous formalisations are given. Recent work by Karel Hrbacek, based on YvesPéraire’s research offers a new formalisation of these ideas, mathematicallyrigorous yet still reasonably close to intuitive ideas and with a lower level oftechnical complexity. We have adapted this work to Geneva high school level.
There have been several attempts to use nonstandard analysis for teaching,by Keisler [5], Stroyan [7] or Robert [6] for instance. These previous theoriesused different approaches but one limitation was common to all: if h is infinitelysmall (in a way clearly defined in each theory) the derivative of f : x 7→ x2was easy at x = 2 but difficult at x = 2 + h. The approach used here doesnot have this drawback.
This paper is a companion to the book "Analysis with ultrasmall numbers"
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1. The purpose, here, is to offer the possibility of a quick start if one wantsto use it as a teaching approach. The book offers deeper insights, far morerigour and more formal justifications of the theory. In particular, the discussionabout the fact that theorems which are true in classical mathematics (withoutthe concept of ultrasmall number) remain true in this approach is found in thebook.This approach has been used for several years in several high schools inGeneva (Switzerland).

1Analysis with ultrasmall numbers, Karel Hrbacek, Olivier Lessmann, Richard O’Donovan,CRC Press, 2015, ISBN: 9781498702652
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Part II
How to read a proof
The goal of this part is to help instructors or examiners understand a proof
which uses ultrasmall numbers. This can happen when, in our school, final
exams have an external juror in addition to the teacher. It can also be used
to see that for the trained mathematician, the translation back to "classical"
methods is quite straightforward.
This part does not explain how to write the proofs, only how to read them.

As in any book about analysis, we do not give the axioms of set theory,but state instead, properties of real numbers.
Observability
Extra Axioms – called also Principles – are used which allow to make an extradistinction within the real numbers: observability.The intuition is that “ordinary numbers” are observable but that thereare extremely small numbers (ultrasmall) which are so tiny that they are notobservable. But if one zooms in to observe these tiny numbers, one can stillsee the previously observable numbers. And if such a tiny number h is addedto 2, then 2+h is less observable than 2, which remains observable when 2+his observable.Given x and y, then x is as observable as y, or y is as observable as x.They may have the same observability. Observability is transitive.

One can consider the metaphor of scales of observation.Numbers defined without the concept of observability are observable rel-ative to any real number: they are always observable – or standard.
Ultrasmall
Relative to any real number, there exist ultrasmall numbers: numbers whichare less, in absolute value, than any strictly positive observable number, yetnot zero.Relative to a, if h is ultrasmall, then 1

h is ultralarge. But then we alsohave that a and a+ h are extremely close, written a ≃ a+ h, where the onlynew symbol is "≃" which reads "ultraclose": a difference which is ultrasmall orzero. Note that a+ h is not as observable as a.
An ultrasmall number has the "flavour" of an infinitesimal.
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Context
Given a formula which has some parameters, the concept of ultrasmall, ul-tralarge or ultraclose always refer to the whole list of parameters. If h isultrasmall, it must be ultrasmall relative to each parameter. Thus "≃" by itsdefinition refers to all of the parameters.

The context of a statement is the list of parameters used in that statement.
Some instructors use the word "observability" instead of context. This is a
pedagogical choice which does not change the theory.

Closure
Non observable numbers do not show up as results of operations if they arenot introduced explicitly. Given f and a, then f(a) is observable (the contextbeing a and the parameters of f ).
Observable neighbour
For any number x which is not ultralarge, there is an observable number asuch that x ≃ a.Or:Any number x which is not ultralarge can has be written in the form x =
a+h where a is observable and h is ultraclose to zero. Then a is the observableneighbour of x.

The existence of the observable neighbour (or observable part) is equivalent
to the completeness of R.

Limit
lim
x→a

f(x) = L is, here, defined by, L is observable and
x ≃ a (x ̸= a) ⇒ f(x) ≃ L

and does not depend on the choice of x.Since the sum of two ultrasmall numbers is ultrasmall or zero and similaralgebraic properties, it is easy to prove that the sum, resp. product, quotientof limits is the limit of the sum, resp. product, quotient.
Translation
When reading dx or h ≃ 0, consider that h is a real number with the idea of it
being arbitrarily small in absolute value. When we keep only the observable
part of the result (if it exists), this translates to "limit when h tends to 0".
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Examples

Continuity
f is continuous at a if f(a+ dx) ≃ f(a) whenever dx ≃ 0. This translates to
lim
h→0

f(a + h) = f(a) as usual. It is also written in a simple form: x ≃ a ⇒
f(x) ≃ f(a)

Derivative of f at a

If there is an observable value D such that for any dx we have f(a+ dx)− f(a)

dx
≃

D then f ′(a) = D. This translates to lim
h→0

f(a+ h)− f(a)

h
= D.(The context is given by the parameters of f and a)

Example proof: Continuity of f ◦ gAssume that g is continuous at a and f is continuous at g(a). Then if x ≃ awe have g(x) ≃ g(a) by continuity of g and f(g(x)) ≃ f(g(a)) by continuityof f .

We now proceed to show how to write such proofs by considering somespecific examples and discuss some pedagogical issues.
8



Part III
Basic Principles
The following principles are consequences of axioms added to the classicalaxioms of set theory. When teaching analysis one usually does not studyaxioms but their consequences on real numbers. Theses will thus be consideredaxiomatically together with other properties of real numbers..
Definition 1
The context (or observability) of a property, function or set is the list of pa-
rameters used in its definition.

Observability Principle

• A number is observable relative to a context if it is observable relativeto at least one parameter of the context.
• Every number is observable relative to some context.
• Two numbers a and b will always have a common context. If a is notobservable relative to b, then b will be observable relative to a.

The word "observable" , by convention, refers to a context. The contextis the parameters, sets and functions the statement is about. Therefore todetermine the context of a statement, one must be able to describe about whatit says something.
It is not a bad exercise – pedagogically – to ask students what a theorem,

definition, or statement is about. The derivative of f at a for instance, is only
about f and a, not about the dx or the ε and δ which are all dummy variables.

If a number is observable whenever any other number is observable, wesay that it is always observable.
Closure Principle
Numbers defined without reference to observability are always observable.
If a number satisfies a given property, then there is an observable number
satisfying that property

(Observability here being given by the property).
The closure principle tells us that all "familiar" numbers such as 1; 3; 1010; √2or π are always observable
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But also that if a number is calculated using some parameters, the resultingnumber will be observable. Non observable results do not show up unlessexplicitly summoned.
Example

Let f : x 7→ x2 + 3 The constants of f are 2 and 3 which are always
observable. There is no parameter. The number f(4) is thus also always
observable.

Let g : x 7→ ax2 + b. The parameters are a and b. Thus f(4) is as
observable as a and b.

In general f(x) is as observable as x.

Definition 2
A real number is ultrasmall if it is non zero and smaller in absolute value than
any strictly positive observable number

This definition makes an implicit reference to a context which thereforemust be determined before an ultrasmall number is referred to.
Principle of ultrasmallness
Whatever the number x, there exist ultrasmall real numbers relative to x.

Note in particular that if ε is ultrasmall relative to some context containing
a then ε is not observable — neither is a+ ε.
Definition 3
A real number is ultralarge if it is larger in absolute value than any strictly
positive observable number

△! Note that 0 is not ultrasmall. This can be justified by observingthat the reciprocal of an ultrasmall is ultralarge and 0 has no reciprocal.
△! Note the asymmetry: if h is ultrasmall relative to x, then it is notobservable. But then x is observable relative to h, hence x is not ultralargerelative to h.

Definition 4
Let a, b be real numbers. We say that a is ultraclose to b (relative to some
context), written

a ≃ b,

if b− a is ultrasmall or if a = b.In particular, x ≃ 0 if x is ultrasmall or zero.
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Definition PrincipleThe only acceptable properties are those that do not refer to observability("classical" definitions) or those that use the symbol "≃".
As one would expect (see below for a proof) the reciprocal of an ultralargeis an ultrasmall, thus n is ultralarge may be characterised by stating that

1/n ≃ 0.
In class, it is often possible to replace the second part of the closureprinciple by one of its consequences, using contextual notation:

f(a) is observable
This refers to the context, by the word "observable". The only parameters ofthis property are f and a.

A context is extended if parameters are added to the list.
Stability Principle
A property is true if and only if it is true when its context is replaced by an
extended context.

This principle ensure, for example, that if f and g are functions, then thederivatives f ′(a) and g′(a) remain the same even if f ′(a) is calculated usingthe additional parameters of g. For all functions given by explicit rules it isseen by inspection. Formally, it is a consequence of stability.
"≃" is the only new symbol introduced.

Why ultralarge rather than infinity?
The classical definition that integers are finite cardinalities remains true hence
ultralarge integers cannot be infinite. They are huge, very huge, but not
infinite.
Consequently, their reciprocals will be ultrasmall. These numbers are real
numbers.
This approach contradicts no classical mathematical statement but by using
an extra distinction, it can make statements that cannot be expressed without
the concept of observability.

If a ≃ b then a and b are said to be neighbours. If a is a neighbour of b andis observable (relative to some context) then a is the observable neighbour of
b.
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Principle of the observable neighbour(We also say "observable part".
Relative to a context, for any real number x which is not ultralarge, there
is an observable number a such that x ≃ a.Such an x can be written in the form a + h – where a is observable and
h ≃ 0.

a is the observable part of x.This principle is similar to the completeness of the reals.
Exercise 1 (answer page 30)
Using the principles and definitions, show that (relative to a given context)

(1) If ε is ultrasmall, then 1
ε is ultralarge.

(2) If M is ultralarge then 1
M is ultrasmall.

Rule 1
Given a context. Let a be observable and non zero and h ≃ 0 (non zero) and
ε ≃ 0. Then

(1) a · h ≃ 0

(2) a

h
is ultralarge.

(3) ε · h ≃ 0

(4) ε+ h ≃ 0

Exercise 2 (answer page 30) Prove rule 1.

Rule 2
Given a context. Let a and b be observable and x and y be such that a ≃ x
and b ≃ y. Then

(1) a± b ≃ x± y.

(2) a · b ≃ x · y.

(3) If b ̸= 0 then a

b
≃ x

y
.

(4) a ≃ b ⇒ a = b.
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Exercise 3 (answer page 30) Prove rule 2.

We refer to these rules as "ultracalculus". The proofs are algebraic and agood training for students to learn how to work with definitions.
A consequence of (4) is that the observable part is unique. If a ≃ x ≃ bwith a and b observable, then a = b. This is equivalent to the uniqueness ofthe limit!
The existence of the observable neighbour is not guaranteed in Q. Let xbe a rational ultraclose to √

2 (for ultralarge whole number N , take the first
N digits of √2). √2 is standard, by closure: it is the unique positive solutionof x2 = 2 which has no parameters. Since √

2 is always observable and notrational, the observable neighbour of x is not in Q.
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Part IV
The derivative
We will not show the proofs of all theorems about derivatives but we hope toshow enough that the reader can perform the remaining proofs as exercises.

The definition of the derivative at a point requires that the function bedefined at least on an open interval ]b, c[ containing a. Since the domain isdetermined by f (closure), it is observable and we can always suppose that
b, c are observable.Since x is the independent variable, its increment can always be chosento be non zero. It can be positive or negative. We write dx for this ultrasmall(non zero) increment.
Definition 5
Let f by a real function defined on an open interval containing a.
We say that f is differentiable at a if there is an observable number D such
that for any dx ≃ 0 we have

f(a+ dx)− f(a)

dx
≃ D

We write D = f ′(a), the derivative of f at a.

(The context is given by f and a)
• The result must not depend on dx• When it exists, the derivative is the observable neighbour of (f(a+dx)−

f(a))/dx.
Example

Let
f : x 7→ x2 + 3x

For the derivative at x = 5. The parameters are 2,3 and 5 (the context). Let
dx be ultrasmall. Then

f(5 + dx)− f(5)

dx
=

((5 + dx)2 + 3(5 + dx))− (25 + 15)

dx
=

10dx+ 3dx+ dx2

dx
= 10+3+dx.

Then 13 + dx ≃ 13 which is observable and does not depend on dx, hence it
is the derivative.

△! The same proof could be done with x = a in general. Then ais part of the context. For those familiar with other forms of nonstandard
14



calculus: note that here we could have directly shown that f ′(a) = 2a+ 3 forall a whether always observable or less observable. This is one of the mainfeatures of this approach.
△! Note that it is possible to be reasonably "careless" about the con-text. When the formula is expanded, dx must be ultrasmall relative all otherterms in the expansion.

Example
Let

g : x 7→ |x|

at 0. Let dx be ultrasmall. If dx > 0, then

g(0 + dx)− g(0)

dx
=

g(dx)− g(0)

dx
=

dx− 0

dx
=

dx

dx
= 1.

But if dx < 0, then

g(0 + dx)− g(0)

dx
=

g(dx)− g(0)

dx
=

−dx− 0

dx
=

−dx

dx
= −1.

There is thus no unique real number satisfying the condition independently of
dx. The conclusion is that the derivative of g does not exist for x = 0.The modulus function is defined with no reference to observability, it isthus a function which is always observable. But in fact, one can ignore thisand simply use that dx is ultrasmall relative to the function and 0.
Differentiation rules
Let dx be ultrasmall relative to a and f . We write

∆f(a) = f(a+ dx)− f(a).

Then
∆f(x)

dx
≃ f ′(x).or:

∆f(x)

dx
= f ′(x) + ε with ε ≃ 0.

And also f(x+ dx) = f(x) + ∆f(x).
We now show without further comment the proofs of some the usual rulesof differentiation and leave the others as exercises.We do not specify the context explicitly since it should by clear now that itis the list of parameters. (dx is not a parameter but a dummy variable, as are
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the ε and δ of classical proofs: the context is "what we are talking about".) dxis always chosen ultrasmall not zero, hence we do not specify it every time.
Theorem 1
If f ′(a) exists, then ∆f(a) ≃ 0.

Proof: ∆f(a) = ∆f(a)
dx · dx ≃ f ′(a) · 0 = 0

□

Alternative proof: ∆f(a) = f(a+dx)−f(a) = f ′(a) · dx︸ ︷︷ ︸
≃0

+ ε · dx︸ ︷︷ ︸
≃0

for ε ≃ 0.
It is then immediate that ∆f(a) ≃ 0.

This shows that differentiability implies continuity, but since here, we
choose to study derivatives before continuity, the concept is not mentioned.

Theorem 2
Let f and g be functions differentiable at a. Then the function f · g is differ-
entiable at a and

(f · g)′(a) = f ′(a) · g(a) + f(a) · g′(a).

Proof:

∆(f · g)(a)
dx

=
f(a+ dx) · g(a+ dx)− f(a) · g(a)

dx

=

(
f(a) + ∆f(a)

)
·
(
g(a) + ∆g(a)

)
− f(a) · g(a)

dx

=
f(a) ·∆g(a) + ∆f(a) · g(a) + ∆f(a) ·∆g(a)

dx

= f(a) · ∆g(a)

dx
+

∆f(a)

dx
· g(a) + ∆f(a) ·∆g(a)

dx

≃ f ′(a) · g(a) + f(a) · g′(a),

since, in particular, ∆f(a) ·∆g(a)

dx
=

∆f(a)

dx
·∆g(a) ≃ f ′(a) · 0 = 0(∆g(a) ≃ 0 by theorem 1 and f ′(a) is observable by its definition, andobservable× ultrasmall is ultrasmall, by rule 1).Since f ′(a) · g(a) + f(a) · g′(a) is observable, it is the derivative.

□
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△! Stability is in fact hidden in the proof. If g(a) is not as observable as
f(a) then the context for f ′ is extended to contain also g(a) and this becomesthe general context. In class, almost all functions are always observable sothis subtlety is not really an issue, and in the case of explicitly given functions,it is true by inspection.
Theorem 3 (Chain Rule)
Let g be a function differentiable at a and f a function differentiable at g(a).
Then the function f ◦ g is differentiable a and

(f ◦ g)′(a) = f ′(g(a)) · g′(a).

Proof: We consider two cases (1) ∆g(x) = 0 and (2) ∆g(x) ̸= 0.
(1) If ∆g(x) ̸= 0, then

f(g(x+ dx))− f(g(x))

dx
=

f(g(x) + ∆g(x))− f(g(x))

dx

=
f(g(x) + ∆g(x))− f(g(x))

∆g(x)
· ∆g(x)

dx

≃ f ′(g(x)) · g′(x)

since f is differentiable at g(x) and since g is differentiable x we have
∆g(x) ≃ 0.The proof may be easier to read if we use Leibniz’ notation, replacing
g(x) by y and ∆g(x) by ∆y, then

∆f(y)

dx
=

∆f(y)

∆y
· ∆y

dx
≃ f ′(y) · y′

(2) If ∆g(x) = 0 then g(x+dx) = g(x) and g′(x) = 0, therefore f(g(x+ dx))− f(g(x))

dx
=

0. And f(g(x))′ = f ′(g(x)) · g′(x).
□

Definition 6
If f is differentiable at a, the quantity f ′(a) · dx is noted df(a): it is the
differential of f at a.

Then we have
df(a)

dx
= f ′(a)
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which is an equality. The expression df(a)/dx here, really is a quotient.
△! Note the difference between ∆y and dy i.e., between the variationand the differential. We have ∆y

dx
≃ y′ hence ∆y

dx
= y′ + ε (for ε ≃ 0). Thus

∆y = y′ · dx+ ε · dx
= dy + ε · dx

The differential is the variation along the tangent line.

f(a)

a
a+ dx

f(a+ dx)
f(a) + f ′(a) · dx

df(a)∆f(a)

Theorem 4 (de l’Hospital’s Rule for 0/0 – simple form )
Let f and g be functions differentiable at a. Suppose that f(a) = g(a) = 0
but that g′(a) ̸= 0. Then

f(a+ dx)

g(a+ dx)
≃ f ′(a)

g′(a)

Exercise 4 (answer page 31) Prove theorem 4.
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Part V
Continuity

Definition 7
Let f be a function defined on an open interval containing a. We say that f
is continuous at a if

f(x) ≃ f(a) whenever x ≃ a.This is a property of f and a hence this determines the context.Alternatively: f is continuous at a if
f(a+ dx) ≃ f(a)

or still
∆f(a) ≃ 0If f is differentiable at a then f is continuous at a. This is a restatementof theorem 1.

Theorem 5
Let f and g be two functions continuous at a. Then

(1) f ± g is continuous at a.

(2) f · g is continuous at a.

(3) f

g
is continuous at a if g(a) ̸= 0.

Proof: This theorem is a direct application of the rules that x ≃ a and y ≃ bimply x · y ≃ a · b et x+ y ≃ a+ b and x/y ≃ a/b (rule 2).
□

Theorem 6
Suppose that g is continuous at a and that f is continuous at g(a). Then f ◦g
is continuous at a.

Proof: Let x ≃ a. Then g(x) ≃ g(a) by continuity of g at a so f(g(x)) ≃
f(g(a)) by continuity of f at g(a).

□

Example
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By rule 2 x 7→ x2 is continuous- We use this to show that x 7→
√
x is also

continuous.

Proof:
Let x ≃ a.√
x is either less than x if x > 1 or less than 1, hence it is not ultralarge.

Consider its observable neighbour b ≃
√
x.

By continuity of x 7→ x2 we have b2 ≃ x.
Since x ≃ a we have b2 ≃ a hence b2 = a So b =

√
a, and we conclude

that
√
x ≃

√
a.

□

In general:
Theorem 7 (Continuity of the inverse)
Let f : I → J (I and J closed and bounded) a continuous one-to-one corre-
spondence. Then f−1 : J → I is continuous.

Proof: Let a be observable and in I .Note f(a) = d and a = f−1(y). Let y ≃ f(a), we must show that f−1(y) ≃
a Since J is closed and bounded, every y ∈ J has an observable neighbourin J .Note c the observable neighbour of f−1(y). By continuity of f we have
f(c) ≃ f(f−1(y)) = y ≃ dhence f(c) = d and c = f−1(d) = a because f is one-to-one, hence
f−1(y) ≃ a.

□

Theorem 8 (Derivative of the inverse)
Let f : (a, b) → R continuous and having an inverse. Let y = f(x). If f is
differentiable at x ∈ (a, b) with f ′(x) ̸= 0, then f−1 is differentiable at y and

(f−1)′(y) =
1

f ′(x)
=

1

f ′(f−1(y))
.

Proof:
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f−1

y

x

y +∆y

x+ dx

∆y

dx

f

y

x

y +∆y

x+ dx

∆y

dx

Then
∆f−1(y)

∆y
=

dx

∆y
=

1
∆y

dx

=
1

∆f(x)

dx

≃ 1

f ′(x)
,

since ∆f(x)

dx
≃ f ′(x) ̸= 0 by hypothesis. But 1

f ′(x) is observable by closure,so (f−1(y))′ exists and
(f−1(y))′ =

1

f ′(x)
=

1

f ′(f−1(y))
.

□
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Part VI
Limit
Continuity being defined without reference to the limit, we can define the limitin terms of continuity without circularity.The limit of f at a is the value that f should take to be continuous at a.Formally:
Definition 8
Let f be function defined around a. We say that the limit of f at a exists if
there is an observable real number L such that

f(x) ≃ L whenever x ≃ a (x ̸= a).

Example
Consider the function

f : x 7→ 2x2 − 7x+ 3

x− 3
, with Dom(f) = R \ {3},

and its limit at a = 3. The function is defined f around 3. Let x ≃ 3 (x ̸= 3) .
Then

f(x) =
(x− 3)(2x− 1)

x− 3
= 2x− 1 ≃ 2 · 3− 1 = 5

Since 5 does not depend on the choice of x and is ultraclose to f(x), it is the
limit.

Theorem 9
If the limit of f at a exists then it is unique.

Proof: Suppose that L1 and L2 are observable and such that
f(x) ≃ L1 and f(x) ≃ L2whenever x ≃ a (x ̸= a) .But then L1 ≃ L2 and are both observable. therefore L1 = L2

□

We write
lim
x→a

f(x) = L

if the limit if f at a is L.
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Part VII
Intermediate Value Theorem
For local properties (derivatives, continuity) the method is to look at ulracloseneighbours to determine an approximation of the required value. The observ-able part being the exact value. For global properties (Intermediate Value,Extreme value, Integral) the method is to divide the interval into an ultralargenumbers of pieces, find the best approximation and use its observable part.For f(a) < 0 < f(b) we search for a c in [a; b] with the such that f(c) ≃ 0.The context is a, b et f . We first choose an ultralarge whole number N . Then
dx = (b − a)/N is ultrasmall. We consider the N + 1 points xi = a + i · dx,for i = 0, . . . , N . Then we find an "ultragood" approximation to the requirednumber. The observable neighbour of this turns out to be the number havingthe property.
Theorem 10 (Intermediate Value)
Let f be a function continuous on [a; b] such that f(a) < 0 < f(b). Then there
is a c ∈ [a; b] such that f(c) = 0.

Proof: (The context is f , a, b and d.)Let N be a positive ultralarge integer and let dx = (b − a)/N . Then
dx ≃ 0. Consider xi = a+ i · dx, for i = 0, . . . , N (hence x0 = a and xN = b).Since it is a finite collection, there is a first index j such that f(xj+1) ≥ 0.Then we have

f(xj) ≤ 0 ≤ f(xj+1).Let c be the observable neighbour of xj (it exists since xj is bounded byobservable a and b). Then xj ≃ c. Furthermore, c ∈ [a; b] et c ≃ xj+1 because
xj ≃ xj+1. By continuity of f at c we have

f(c) ≃ f(xj) < 0 et f(c) ≃ f(xj+1) ≥ 0.

We deduce that
f(c) ≃ 0.But f(c) is observable by closure and also 0, so
f(c) = 0.

□
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Part VIII
The integral
We consider two approaches to the integral. First assuming that an areafunction exists, then by summing an ultralarge number of ultrasmall values.Consider a non negative function f continuous on [a; b]. Let A(x) be thearea between the function and the x-axis between a and x.The variation of the area between x and x+ dx is noted ∆A(x).

a b
x+ dx

x

∆A(x)A(x)

f

Theorem 11
Let f be a non negative function continuous on [a; b]. Then the function

A : x 7→ A(x),

where A(x) is the area under the curve between a and x satisfies the two
following properties:

(1) A′(x) = f(x), for every x ∈ [a; b].

(2) A(a) = 0.

Proof: (2) is obvious. We show (1).The context is a, f and x. Let dx be ultrasmall and positive. Since f iscontinuous on [x;x + dx] it attains its maximum and minimum on [x;x + dx].Note (xM , f(xM )) for the maximum and (xm, f(xm)) for the minimum. Then
f(xm) · dx ≤ ∆A(x) ≤ f(xM ) · dx.

Therefore
f(xm) ≤ ∆A(x)

dx
≤ f(xM ).
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As f is continuous at x (which is part of the context hence observable) and
x ≃ xM and x ≃ xm we have f(x) ≃ f(xM ) and f(x) ≃ f(xm) (hence also
f(xM ) ≃ f(xm)), this implies that

∆A(x)

dx
≃ f(x).

The same result follows if dx is negative and
A′(x) = f(x),because f(x) is observable.

□

Definition 9
Let f be a function defined on [a; b]. We say that f is integrable on [a; b] if
there is an observable real number I such that
for any ultralarge whole number n with dx =

b− a

n
and xi = a + i · dx for

i = 0, . . . , n, we have (
n−1∑
i=0

f(xi) ·∆x

)
≃ I.

If such a number exists, we call it the ’integral of f between a and b written∫ b

a
f(x) · dx.

Theorem 12 (Fundamental Theorem of Analysis)
Let f be a function continuous on [a; b]. Let F be an antiderivative of f on
[a; b]. Then ∫ b

a
f(x) · dx = F (b)− F (a).

Proof:Let N be a positive ultralarge positive integer let dx = (b − a)/N and
xi = a+ i · dx for i = 0, . . . , N . We write F (b)− F (a) as a telescoping sum:

F (b)− F (a) =
N−1∑
i=0

F (xi+1)− F (xi) =

N−1∑
i=0

F (xi + dx)− F (xi).

By the mean value theorem, there is an x in [xi, xi+1] such that F (xi+1)−
F (xi) = F ′(x)·dx. Since x is between a and b it is not ultralarge. Let c be the
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observable neighbour of x. The derivative of F is assumed to be continuouson [a; b] so F ′(x) ≃ F ′(c) ≃ F ′(xi). Hence F ′(x) = F ′(xi) + εi and
F (xi+1)− F (xi) = F ′(xi) · dx+ εi · dx = f(xi) · dx+ εi · dx.

Therefore we have
F (b)− F (a) =

N−1∑
i=0

f(xi) · dx+
N−1∑
i=0

εi · dx.

We now show that
N−1∑
i=0

εi · dx ≃ 0.

Take positive and observable c. Then c

b− a
is observable by closure and

|εi| <
c

b− a
, for every i since εi ≃ 0. Then

∣∣N−1∑
i=0

εi · dx
∣∣ ≤ N−1∑

i=0

|εi| · dx <
N−1∑
i=0

c

b− a
· b− a

N
= c

N−1∑
i=0

1

N
= c.

This means that ∣∣∑N−1
i=0 εi · dx

∣∣ is less than any observable positive number
which implies N−1∑

i=0

εi · dx ≃ 0.
One could also take ε = max{|εi| | 0 ≤ i ≤ N}, then

∣∣∣∑N−1
i εi · dx

∣∣∣ ≤∑N−1
i ε · dx ≤ ε ·

∑N−1
i dx ≤ ε · (b− a) ≃ 0Hence

F (b)− F (a) ≃
N−1∑
i=0

f(xi) · dx,

but as F (b)− F (a) is observable f is thus integrable and
F (b)− F (a) =

∫ b

a
f(x) · dx.

□

The proofs that continuous functions are integrable and that the integralis an antiderivative is more involved.
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Integration rules
Integration rules are shown as usual by assuming the existence of antideriva-tives. We do not show these here.We do show, however integration by variable substitution by an example.It is a hidden use of the chain rule..
Example

Consider ∫ 1

0

√
1 +

√
x · dx.

Let u = 1 +
√
x. (Therefore u− 1 =

√
x)

du

dx
=

1

2
√
x
=

1

2(u− 1)

hence
dx = 2 · (u− 1) · du.

Then
√
1 +

√
x =

√
u and

√
1 +

√
x · dx =

√
u · 2 · (u− 1) · du

If x = 0 then u = 1 and if x = 1 then u = 2.
x u

0 1
1 2

Replacing all terms we get∫ 1

0

√
1 +

√
x · dx = 2

∫ 2

1

√
u · (u− 1) · du = 2

∫ 2

1

(
u3/2 − u1/2

)
· du

so that
2

(
2

5
u5/2 − 2

3
u3/2

) ∣∣∣∣2
1

=
8 + 8

√
2

15
.

Since g is a one-to-one correspondence on [1; 2] whose inverse is differentiable
x 7→ 1 +

√
x (except at x = 0), it is also possible to go back to the original

variable x and find an antiderivative.∫ √
1 +

√
x · dx =

4

5

(√
1 +

√
x

)5

− 4

3

(√
1 +

√
x

)3

+ C.
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Part IX
Equivalence of definitions of Limits
Introduction
Extending the classical axioms with the additional axioms which enable toproduce the concepts of ultrasmall numbers and related concepts has beenproven to be a conservative extension.

A statement about observable numbers which can be expressed withoutreference to observability can be understood as a statement of classical math-ematics once the additional structure is “forgotten”. This is what “conservativeextension” means.There are, of course, statements with ultrasmall numbers which have noequivalent in classical mathematics, such as x ≃ a.
Reminder about contexts
The context of a statement is the list of parameters used within it. It does notcontain variables linked by a ∀ or ∃: these are so called dummy variables.The statement is not about them: they are simply useful figments.
Definition 1The function f has a limit at a if there is an L, such that

∀ε > 0, ∃δ > 0 |x− a| < δ ⇒ |f(x)− L| < ε

This statement is not about ε nor δ: It is about f, a and L.
Definition 2The function f has a limit at a if there is an observable L such that

∀x x ≃ a ⇒ f(x) ≃ L

This statement is not about x: It is about f, a and L.
Theorem 13
Definition 1 ⇐⇒ Definition 2

Proof:
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(1) ⇒ (2)Assume
∀ε > 0, ∃δ > 0 |x− a| < δ ⇒ |f(x)− L| < εThe context is given by f, a et L.Since the algorithm is to show the relation between any given ε and thecorresponding δ, we fix ε and the context is extended to f, a, L and ε.Then

∃δ > 0 |x− a| < δ ⇒ |f(x)− L| < εBy closure, there is an observable δ satisfying the property.hence, for any x, if x ≃ a, then |x− a| < δHence we have the following statement,
∀x x ≃ a ⇒ |f(x)− L| < ε

but since ε is in the context, this implies that |f(x)− L| ≃ 0 or f(x) ≃ L

Therefore
∀x x ≃ a ⇒ f(x) ≃ L

(2) ⇒ (1)Assume that
x ≃ a ⇒ f(x) ≃ LThe context is given by f, a and L.Fix ε and extend the context to f, a, L and εLet δ ≃ 0. If |x − a| < δ then x ≃ a. This implies that f(x) ≃ L or

|f(x)− L| ≃ 0.But since ε is observable, we have |f(x)− L| < εSo there is a δ such that
|x− a| < δ ⇒ |f(x)− L| < ε

hence there is an observable such δ.
Therefore

∀ε > 0, ∃δ > 0 |x− a| < δ ⇒ |f(x)− L| < ε

□
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Answers to exercises
Answer to exercise 1, page 12Fix a context.

(1) Let ε be ultrasmall (say positive). Let a be positive and observable.Since ε is ultrasmall, we have ε < 1
a since, by closure, 1

a is observable.Therefore 1
ε > a. Since a is arbitrary (yet observable) we have shownthat 1

ε is ultralarge.
(2) Let M be ultralarge (say positive). Let a be positive and observable. Byclosure 1

a is observable, hence M > 1
a , and 1

M < a. Thus 1
M is ultrasmall.

Answer to exercise 2, page 12

Proof: Without loss of generality we consider all terms to be positive.
(1) By contradiction. Suppose a · h ≥ b for some positive and observable b.Then we have h ≥ b

a . By closure b/a is observable which contradictsthat h is ultrasmall.
△! We suggest to stop a little while on this proof. It shows the powerof the closure principle. This principle and the observable neighbourprinciple are the fundamental tools in this approach. Stability is alsofundamental but is often used without noticing it.

(2) By contradiction: Suppose a/h ≤ b for some positive and observable b.Then we have a ≤ b · h but we have just shown that b · h ≃ 0. Thiscontradicts that a is observable and non zero.
(3) Direct proof: Let b be some observable positive number. By closure √

bis observable and ε <
√
b and h <

√
b hence ε · h < b. Thus ε · h ≃ 0.By contradiction: Suppose ε · h ≥ b for some positive and observable

b. Then ε ≥ b
h . But we have just shown that b/h is ultralarge. Thiscontradicts that ε is ultrasmall.

(4) Direct proof: ε < b/2 and h < b/2 for any positive and observable b.Then ε+ h < b. Since b is arbitrary, ε+ h ≃ 0.Alternatively: 0 ≤ |ε+ h| ≤ 2max{|ε|, |h|} ≃ 0

□

Answer to exercise 3, page 13

Proof:
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(1) If a ≃ x and b ≃ y then by the observable neighbour principle thereexist ε and δ ultrasmall (non zero) such that x = a + ε et y = b + δ.With this notation we have
x± y = (a+ ε)± (b+ δ) = (a± b) + (ε± δ)︸ ︷︷ ︸

≃0

,

therefore a± b ≃ x± y.(2) Similarly for the product:
x · y = (a+ ε) · (b+ δ) = a · b+ a · δ︸︷︷︸

≃0

+ b · ε︸︷︷︸
≃0

+ ε · δ︸︷︷︸
≃0by rule 1 hence a · b ≃ x · y.(3) We first show that 1

b ≃ 1
y .Since b ̸= 0 and y ≃ b, y is not ultrasmall hence 1

y is not ultralarge.Let c be the observable neighbour of 1
y . Then by the previous rules

c ·y ≃ 1
y ·y = 1 but also c ·y ≃ c · b ≃ 1. Since c, b and 1 are observable,

c = 1
b and we have shown that 1

y ≃ 1
b .The general rule is obtained by combining previous results.

a

b
= a · 1

b
≃ x · 1

y
.

(4) If a ≃ b then a− b ≃ 0. Since a and b are observable, their difference isobservable. Therefore it cannot be ultrasmall, hence it is zero.
□

Answer to exercise 4, page 18

Proof: The context is a, f et g. Let x ≃ a with x ̸= a. We write x = a+ dx).Then
f(a+ dx)

g(a+ dx)
=

f(a) + ∆f(a)

g(a) + ∆g(a)
=

∆f(a)

∆g(a)
=

∆f(a)

dx
∆g(a)

dx

≃ f ′(a)

g′(a)
.

□

It is also possible to use f(a + dx) = f(a) + f ′(a) · dx + ε · dx and
g(a+ dx) = g(a) + g′(a) · dx+ δ · dx, hence

f(a+ dx)

g(a+ dx)
=

f ′(a) · dx+ ε · dx
g′(a) · dx+ δ · dx

=
f ′(a) + ε

g′(a) + δ
≃ f ′(a)

g′(a)
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Part X
Particularities
What happens if contextual notation is not used.
The "≃" symbol is defined only relative to some context. Referring in a noncontextual way would require to invent a new notation. The reader may find itamusing to try and invent such a notation of their own and see "pathological"objects. (see the paper "external functions" on this site)We will not address this issue further except to say that contextual notationguarantees that objects they define are really sets, functions or properties inthe usual sense and can be used in induction.
The problem of induction

△! Note for teachers: it is not possible to proceed by induction to showthat all numbers are observable.The reader familiar with induction may conclude that since 1 is alwaysobservable then 2 = 1+1 is observable – which is true by closure, and that if
n is always observable, then n+ 1 is also always observable – which is alsotrue also by closure. But it would be false to conclude that this proves thatall natural numbers are always observable. They are not: there are ultralargeintegers. Induction is a property which is valid for classical statements whichdo not use the concept of observability. We will see that we can extendinduction to "contextual" statements. The statement “is always observable” isclearly not a classical statement. It is not a contextual statement either: n+1is as observable as n is a statement about n (and n + 1) hence it cannot beused in a definition – see page 11 (Definition principle).

This aspect of induction is probably the most troubling to newcomers with
a mathematical training.
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