
Sequences and Series

This version has proofs and commentsfor the teacherThese come in frames like this one, and for this reason, the page numbers are not thesame as on the student handout version.
The proofs given must not be understood as “the” proofs, but as the ones which over the
years, I feel most comfortable with. When a theorem does not need anything specific
to ultracalculus, the proof is omitted.
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1 INFINITE SUMS

1 Infinite sums

The question is: can an unending sum give a result? Does
∞∑
k=0

1

2k

have a meaning?

1
2

1
4

1
8

1
16

1
32

1
64

. . .

Exercise 1Is it correct to write
x =

1

2
+

1

4
+

1

8
+

1

16
· · · = 1

2
+

1

2
·
(
1

4
+

1

8
+

1

16
. . .

)
=

1

2
+

1

2
· x

hence x = 1
2 + 1

2x and therefore x = 1?
Exercise 2Using the same method as above, calculate:

x = 1 + 2 + 4 + 8 + 16 + . . .

The question is: what went wrong? In order to answer this sort of question, we will firststudy another type of unending process.
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1 INFINITE SUMS

This exercise is not a joke! The method of fiddling around to find the fraction equalto, say, 0.28 as seen in middle school does exactly this and is terribly wrong. Closinga parenthesis after infinitely many numbers is impossible unless we define what wemean. And the only definition I know of is that a series is equal to its limits if the limit
exists! It is possible to define the closing parenthesis as “the limit if it exists” but thewhole point of this chapter is to make students aware of the whole concept. So I startby assuming that nothing works until defined and proven. . .
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2 SEQUENCES

2 Sequences

Definition 1
A sequence is a function

u : {k, k + 1, . . . } ⊆ N −→ R, with k ∈ N.

We also use the notation:
(un)n≥kfor the sequence above, with un = u(n), for n ≥ 0. We also write (un) if the set of indices isobvious or irrelevant. The numbers un are called the terms of the sequence.The context of a sequence is the list of parameters used in its definition, in particular itcontains the integer k – but not n which is a variable.A finite sequence can be given by enumeration:
1, 2, 3, 4, 5

If the rule for obtaining the elements is obvious, dots will be used:
1, 2, 3, . . . , 20, 21, 22

If the sequence is infinite, the enumeration is impossible, but if the rule is obvious, dots willbe used to indicate the never ending succession:
1, 2, 3, 4, 5, . . .

Sets are noted with braces {...} If the general term of the sequence can be represented by
an the notation {an}n is be used.The first and last elements of a sequence will be indicated by superscripts and subscripts:

(an)
20
n=1is the notation for the sequence a1, a2 . . . a19, a20

Exercise 3Find (an)n for the sequence of all natural numbers
For non ending sequences, the symbol (an)

∞
1 can be used to indicate that its number ofterms exceeds all finite terms. (1)

Definition 2 (Explicit Relation)
An explicit relation expresses the kth term as a function of k.

1The ∞ sign expresses the idea of an unending process. This symbol does not represent a number, not even anultralarge number. It means “never ending”
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2 SEQUENCES

Exercise 4Write the first terms of the following sequence:(
1

n

)∞

1

Exercise 5Write down the first five terms of the sequences specified by their nth terms (in each case,
n ∈ N)

(1) un = 4n

(2) tn = 2n−1

(3) an = 3n− 2

(4) bn = 2n2 − 1

(5) rn = (−1)n

(6) en = (−1)n
n2

n+ 1

Definition 3 (Convergence)
Let (un)n≥k be a sequence. We say that (un)n≥k converges if lim

n→∞
un exists i.e., if there is an

L ∈ R such that
lim
n→∞

un = L.

or (explicitly)
(un)n≥k converges if there is an observable L ∈ R such that for all ultralarge N

uN ≃ L.

The number L is the limit of the sequence.

Definition 4 (Non convergence)
A non-convergent sequence may be

• divergent (the terms eventually get ultralarge),

• bounded

! If a sequence has a limit, it does not necessarily “reach” its limit. It may or may not haveterms equal to its limit.
Exercise 6

(1) Find the limit of ( 1n)n
(2) Find the limit of ( n

n+1

)
n
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2 SEQUENCES

Definition 5 (Recurrence Relation)
A recurrence relation expresses the kth element of a sequence in terms of one or more of its
predecessors.
In order to know where the sequence begins, it is necessary to state the value of the first term
of the sequence. a

aRecall the conditions for an induction proof.
Exercise 7Write the first terms of the sequences:(1) u1 = 1 uk =

uk−1

k + 1(2) u1 = 1 un = 2 · un−1(3) u1 = 2 ui = 3 + 2ui−1If possible, rewrite them in explicit form. Why do you need an induction proof?
Exercise 8Consider

u1 = 5

un =

{un−1

2
if un−1 is even

3 · un−1 + 1 if un−1 is oddUse other values for u1 and try to see the behaviour of this strange sequence. (The fact thatit ends in the same way for any initial value is the Syracusa conjecture.)
A Graph of a sequence helps to see how it behaves. Joining the plotted dots by a dottedline (because the domain is defined on natural numbers, the plot will be discrete points)The sequence {1,−1/2, 1/3,−1/4, 1/5,−1/6, 1/7,−1/8, } is plotted below:

Exercise 9Give the first terms of the following sequences:(1) u1 = 5 un = 1 +
un−1

10

(2) u1 = 0 un =
1

5− un−1If possible, rewrite them in explicit form.
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2 SEQUENCES

Exercise 10Write the first terms of the following sequences:(1) u1 = 0 u2 = 1 ur = 2ur−1 − ur−2(2) u1 = 1 u2 = 3 uk = 3uk−1 − 2uk−2

Exercise 11One of the most famous sequences: The Fibonacci sequence. 2
u1 = 0 u2 = 1 un = un−1 + un−2

(1) Write the first terms (at least ten) of the sequence and describe the behaviour of thesequence.(2) Make a new sequence vk with the following rule (with un the sequence just calculated),sketch the first terms and describe the behaviour.
v1 =

u2
u1

v2 =
u3
u2

v3 =
u4
u3

vn =
un+1

un(3) Use the same rule as in the beginning, but start with any two numbers for u1 and u2 (evenwith u2 > u1) and calculate the second sequence vn made from these terms and sketchthe first terms. Describe the behaviour.(4) Write the first terms of the sequence: w1 = 1 wn = 1 + 1
wn−1

Describe the behaviour ofthe sequence.
Example: Let a and d be two real numbers and let k be a positive integer. We define an
arithmetic progression (with common difference d) as follows:

uk = a and un+1 = un + d for n ≥ k.

It is immediate that un = a+ (n− k) · d, for all n > k. The context of this sequence is given by
a, d, k.
Example: In a similar way, given a, r ∈ R and k ∈ N, we define a geometric progression (with
common ratio r) by

uk = a and un+1 = un · r for all n > k.Then un = a · rn−k for all n < k. A context of this sequence is given by a, r, k.
Exercise 12What are the conditions for an arithmetic sequence to converge?What are the conditions for a geometric sequence to converge?

2Fibonacci was an Italian mathematician in the XIIth century; it was he who introduced Arab-Indian numeralsinto Europe.
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2 SEQUENCES

Exercise 13Describe the behaviour of the following sequences:(1) ((−1)n)n

(2) u1 = 1 un+1 = 1− 1

1 + un(3) (cos (nπ
3

))
n(4) (random numbers between -1 and 1)(5) un = n(n+ 1)(n+ 2)(6) (n)n

(7) u1 = 1 u2 = 1 un =
un−1

un−2

Definition 6
The sequence (un)n≥k is:

(1) increasing if un ≤ um for all m ≥ n ≥ k,

(2) decreasing if un ≤ um for all m ≥ n ≥ k,

(3) monotone if (un)n≥k is either increasing or decreasing.

(4) bounded above if there is an M ∈ R such that un ≤ M for all n ≥ k (the number M is
an upper bound),

(5) bounded below if there is an M ∈ R such that un ≥ M for all n ≥ k (the number M is a
lower bound),

(6) bounded if the sequence is either bounded above and bounded below.

Let (un)n≥k be a sequence. If it is bounded above then by the context principle there is anobservable M which is also an upper bound. Conversely, if there is an observable M such that
un ≤ M, for all observable n,

then by the context principle this statement is true for all integers (including ultralarge integers).The same remark holds for lower bounds.
Definition 7 (Least Upper Bound)
A least upper bound M to a nonempty set A of real numbers is a value such that x > M ⇒ x /∈ A
and for any N < M there is an x ∈ A such that x > N .A similar definition holds for greatest lower bound.
Theorem 1
A nonempty set of real numbers bounded above has a least upper bound (l.u.b). A nonempty set
of real number bounded below has a greatest lower bound (g.l.b)
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2 SEQUENCES

The proof of theorem 1 needs closure in two versions: the usual one:
"If there is an x satisfying a property, then there is an observable x satisfying that property."

and its contrapositive
"If all observable x satisfy a property, then all x satisfy that property."

Exercise 14Assume a set A has an upper bound.The proof of theorem 1 requires to justify the following steps:
• Then there is an observable a ∈ A and an observable upper bound B. Justify.
• Let N be ultralarge. Divide the interval [a,B] in N even parts. Let xk = a+ k · B−a

N . Let
aj be the smallest value in the partition which is still an upper bound for A and let c beits observable neighbour.Justify that xj has an observable neighbour.

• c is the least upper bound. Explain and this ends the proof.
Reminder: this is the completeness of real numbers: a crucial property not shared byrational numbers – think of {x ∈ Q | x > 0 and x2 ≤ 2} which has no l.u.b. in Q.
First I mention that if a set is a closed interval, [1, 5] then 5 is a l.u.b. If it is open,
]1, 5[, then 5 is still the l.u.b. My advice; take your time on this one, it is not easy tograsp.
But a set can be bits and pieces, not intervals.Consider a set A and an upper bound m for A. The context is given by A (i.e., theparameters used in its definition). By closure, since A is assumed not empty, there isan element in A hence there is an observable a ∈ A. Similarly, if there is an upperbound, then by closure, there is an observable upper bound b.(a)Let N be an ultralarge whole number. Divide [a, b] into N even parts as usual. Let xjbe the smallest among partition points which is still an upper bound. That means thateither xj1 ∈ A or there is an x ∈ A such that xj−1 < x.Since xj is between a and b it is not ultralarge and therefore has an observableneighbour, c.Let d ∈ [a, b] and observable, then if d > c ≃ xj then, in d > xj hence d /∈ A. If d < cthen d < xj−1 hence there is a x ∈ a such that d < x. So c is the least upper boundamong all observable numbers, hence it is the least upper bound among all numbers.
(If there were a counter example, there would be an observable one...)

aThis characterisation can also be used for functions: if a function or sequence has ultralarge values,then it has no maximal value since if it did, it would be an observable maximum.
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2 SEQUENCES

Exercise 15This theorem is not true if one replaces "real" by "rational”. Consider
{x ∈ Q | x2 < 2}

Why does this not have a a least upper bound?
Exercise 16prove the following theorem:
Theorem 2 (Monotone Convergence)
Any increasing sequence which is bounded above is convergent and has a limit. Similarly, any
decreasing sequence which bounded below is convergent and has a limit.

If the sequence is bounded above, then it has a l.u.b.We need to show that the l.u.b. is the limit.Let L be the l.u.b of (un). If for all n, un ̸≃ L, then, since the sequence is increasing,there is an observable number L′ < L such that for all n we have un < L′ hence Lwould not be the l.u.b.So there is an n such that un ≃ L and since for all k, we have un+k ≥ un and L isl.u.b, all elements of the sequence after n satisfy un+k ≃ L. And this defines L as thelimit.
! A sequence (un) is really a function u(n) hence its context depends on the param-eters used to define the terms. If you take h ultrasmall relative to the standard contextand the constant sequence h, h, h, h, h, h, . . . then the context of this sequence is hand its limit is h, not 0.

Students have come with these questions...
Construction of a sequence to calculate

√
2The square root of 2 (or any number) can be computed by repeated approximation. Here is oneof many methods:Let √a be a first approximation to √

2 (the leftover part b is such that a+ b = 2)√
a+ b =

√
a+ δ where δ is the error on the resultThe approximation is such that we hope that δ < 1, neglect δ2 which is even smaller, thusobtaining the following approximation:

a+ b = a+ 2
√
aδ + δ2 ≈ a+ 2

√
aδ

from which we get
b

2
√
a
≈ δ

11



2 SEQUENCES

thus √
a+ b

2
√
a

will be a better approximation than √
aLet √a be written v, then a = v2 and as a+ b = 2 we have b = 2− v2, thus v + 2−v2

2v is abetter approximation to √
2 than v.A sequence can be constructed:

an+1 = an +
2− a2n
2an

a1 =first approximationCompute the first terms of the sequence for different approximations: a1 = 1 , a1 = 1.5 oreven a1 = 2The following values are first a computer value for √2, followed by sequence value: a8 with(a1 = 1.5)
1.41421356237309504880168872420969807856967187537694807317667973798...

1.41421356237309504880168872420969807856967187537694807317667973800...

Exercise 17Write the sequence that calculates √
3 and calculate the first approximations.

Definition 8
Let (un)n≥k be a sequence. We say that (un)n≥k is a Cauchy sequence if

uN ′ ≃ uN , for all positive ultralarge integers N,N ′.

A context is given by the sequence. By the context principle, a sequence is a Cauchysequence if and only if this condition is met for any extended context.
Exercise 18Prove the following theorem:
Theorem 3
Let (un)n≥k be a sequence. Then (un) converges if and only if (un)n≥k is a Cauchy sequence.

(1) assume it converges to L. Then for any ultralarge N and N ′ we have uN ≃ L ≃ uN ′hence uN ≃ uN ′ .
(2) assume it is a Cauchy sequence. Then for any N , N ′, we have uN ≃ uN ′ , hencethere is an x such that for all ultralarge M , uM ≃ x. (Take x = uN ). Hence there isan observable c such that for all ultralarge M , uM ≃ c, so c is the limit.
In particular, this shows that a Cauchy sequence does not reach ultralarge values.

Exercise 19Back to Fibonacci. Use theorem 3 to prove that the sequence of ratios converges. Show thatthe recurrence relation has a fixed point. Then show that this fixed point is the limit.
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3 SERIES

3 Series

Let (un)n≥k be a sequence. It is possible to define another sequence by considering the partial
sums sk = uk and sn+1 = sn + un+1, for n ≥ k. In other words, for a positive integer N wehave

sN = uk + uk+1 + · · ·+ uN =

N∑
n=k

un.

Definition 9 (Partial Sum)
A partial sum is the sum up to a given index number. It is indicated by

S1 =

1∑
i=1

S2 =

2∑
i=1

Sn =

n∑
i=1

Definition 10 (Infinite Series)
An infinite series is the limit of its partial sums.
An infinite series has a sum iff it converges.
Let (un)n≥k be a sequence. A series is the sequence(

N∑
n=k

un

)
N≥k

of the partial sums. We will denote this series by
∞∑
n=k

un.

This definition is equivalent to:
Definition 11 (Convergence of a Series)
A series converges iff there is an observable L such that for any ultralarge N

N∑
i=k

ui ≃ L

Partial sums represent successive approximations of the total sum
uk + uk+1 + uk+2 + . . .which is not necessarily a real number in the sense that it is not guaranteed that the partialsums converge.

Definition 12
Let

∑
n≥k un be a series. We say that

∑
n≥k un converges to L if the sequence of patial sums

converge to L.If the series converges, then the total sum is equal to the limit of the sequence of partialsums. As before, if the limit exists, it is observable
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3 SERIES

Exercise 20Here is a well known series for which it may be possible to guess the limit. However, thequestion is how to prove it.Calculate
∞∑
i=0

1

2i

Exercise 21Same question (also graphically) for
∞∑
k=1

1

4k

Exercise 22Same question for
∞∑
k=1

1

nk

Example: Consider the arithmetic series
∑
n≥1

un, with u1 = a and un = a+ (n− 1) · d.
A context is given by u. To establish the value of N∑

n=1

un first note that
1 + 2 + · · ·+N − 1 =

1

2
(1 + (N − 1) + (2 + (N − 2)) + · · ·+ (N − 1) + 1)) =

N · (N − 1)

2thus
N∑

n=1

a+(n−1)·d = N ·a+d
N∑

n=1

n−1 = N ·a+d·N · (N − 1)

2
=

N

2
(2a+(N−1)d) =

N

2
(u1+uN ).

If N is ultralarge, then
N∑

n=1

un =
N

2
(2a+ (N − 1)d)

is also ultralarge.Hence an arithmetic series cannot converge unless a = d = 0.
Example: Consider the geometric series

∑
n≥1

un, with u1 = a and un = a · rn−1, with a, r ∈ R

(a ̸= 0). Let sN =
N∑

n≥1

un. Note that:
sN = a+ ar + ar2 + · · ·+ arN−1

14



4 CONVERGENCE CRITERIA

multiply by (1− r) and obtain a− arN = a(1− rN )therefore sN · (1− r) = a · (1− rN ) and
sN = a · 1− rN

1− r
, if r ̸= 1.

Note that if r = 1 then sN = a ·N so with a common ratio equal to 1, if the initial term is notzero, the series diverges.It is simple to check that
∑
n≥1

a · rn
{ diverges if |r| ≥ 1converges to a · 1

1−r if |r| < 1.

Exercise 23For a geometric series with 2 as first term and r = 3/4. Write the first terms. Calculate thelimit.
Exercise 24Let

∞∑
k=0

3 · 10−k

Does this series converge and if so, what is its limit?
Exercise 25Calculate (if the value exists)

∞∑
j=0

0.999j

4 Convergence Criteria

Exercise 26Use theorem 3 to prove the following.
Theorem 4
Let

∑
n≥k

un be a series. Then
∑
n≥k

un converges if and only if

for any ultralarge numbers N < N ′
N ′∑

n=N

un ≃ 0

The sequence of partial sums is a Cauchy sequence.
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4 CONVERGENCE CRITERIA

Theorem 5 (Comparison test)
Let (un)n≥k and (vn)n≥k be two sequences with non-negative terms such that

un ≥ vn, for each n ≥ k.

If the series
∑
n≥k

un converges then the series
∑
n≥k

vn converges also.

The series for un provides un upper bound for vn: take ultralarge N , and call U thelimit for un. Then U ≃ uN > vN .
The contrapositive of the previous theorem can be used to prove the divergence of a series.

Theorem 6
Let (un) be s sequence of positive terms. If

∑
n≥k

un converges then, for ultralarge N uN ≃ 0.

Theorem 4 with ultralarge N − 1 and N

Example: The converse of this theorem is false: consider the harmonic series∑
n≥1

1

n
.

We have lim
n→∞

1

n
= 0. We will show now that this series diverges.We observe that

s4 = 1 +
1

2
+

(
1

3
+

1

4

)
≥ 1 +

1

2
+

(
1

4
+

1

4

)
= 1 +

1

2
+

1

2
= 1 + 2 · 1

2

s8 = s4 +

(
1

5
+

1

6
+

1

7
+

1

8

)
≥ s4 + 4 · 1

8
= s4 +

1

2
≥ 1 + 3 · 1

2
.

By induction, we see that
S2N ≥ 1 +N · 1

2
.

But this implies that the series diverges because if N is ultralarge then 2N is ultralarge and
S2N ≥ 1 + N

2 is ultralarge hence not observable.
Theorem 7 (Integral Test)
Let f : [k,∞[→ R be a continuous decreasing and positive function. Let F (N) =

∫ N

k
f(x) · dx.

Then the series
∑
n≥k

f(n) converges if and only if lim
N→∞

F (N) exists.
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4 CONVERGENCE CRITERIA

The following sketch show that the integral will be an upper bound for the series.The dashed line is the integral shifted to the left which is a lower bound. Hence theintegral converges iff the series converges.

f

1 2 3 4

u1

area u1
u2 u3 u4

I do not formalise this more...
Example: Consider the series ∑n≥1

1
n2 . Let f :]0,∞[ by x 7→ 1

x2 . It is a positive continuousdecreasing function. Then
F (N) =

∫ N

1

1

x2
dx = −1

x

∣∣∣∣N
1

= 1− 1

N

Then limN→∞ F (N) = 1 so the series ∑n≥1
1
n2 converges.

Exercise 27The Riemann series is ∑
n≥1

1

np
with p ∈ R.

Show that the Riemann series converges if and only if p > 1.
The two following criteria use comparisons with some geometric series.

Theorem 8 (Ratio Test)
Let

∑
n≥k

un be a series with strictly positive terms.

If
N is ultralarge ⇒ uN+1

uN
≃ L

then

(1) if L > 1 the series diverges,

(2) if L < 1 the series converges.

The ratio test is inconclusive in the case L = 1: we have seen that ∑
n≥1

1

n
diverges but ∑

n≥1

1

n2converges.
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4 CONVERGENCE CRITERIA

Assume L < 1 then there is an observable r such that, for ultralarge N

uN+1

uN
≃ L < r < 1

then for all ultralrge N , we have uN+1 < r · uN .Fix an ultralarge m and for any k,
um+k < rk · um

um is not ultralarge: since the sequence is decreasing at least for ultralarge values ofthe index and the first term is observable, either it is always decreasing (and positive)so it is not ultralarge or it first increases, but then it will have a maximum which isobservable, so it is not ultralarge.
Then

N∑
k=m

uk <
∑
k=m

rk · um = um ·
N∑

k=m

rk

This last sum is a geometric series, hence it converges.
The sum ∞∑

k=0

is cut in two parts: a finite sum and an infinite one, m−1∑
k=0

+
∞∑

k=mFor the first part, the context is extended to m.For all observable n, by closure, un is observable. So the sum of an observable numberof observable values is observable.The second part converges so the whole sum converges in the extended context con-taining m. But the convergence does not depend on the choice of m. So simply: itconverges.
Definition 13
A series

∑
k≥n un (or (un)n≥k) is an alternating series, if un · un+1 < 0 for each n ≥ k.

Theorem 9
Let (un)n≥k be an alternating series decreasing in absolute value. If lim

n→∞
un = 0 then

∑
n≥k un

converges.

Example: This shows that the harmonic alternating series defined by
∑
n≥1

(−1)n
1

n

converges.
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5 TAYLOR SERIES

Exercise 28Show that if one considers the series ∑∞
k=1(−1)k then by rearranging the order of the terms,the sum can be made to be equal to any positive or negative number.

! This is a crucial point. A never ending series can yield strange things! Because it neverends. This is why it is important to work on the partial sums. (More difficult theorems stateunder what conditions can the terms of a series be rearranged without changing the result.)
5 Taylor Series

The idea of this part is to represent a function by a series ∑n≥k an · (x − c)n such that theseries converges to f(x) for some values of x around a point c. This is called the Taylor series
for f at c.We first define the nth derivative of f by induction on n.
Definition 14
Let f be a function. We say that f is differentiable once at x if f ′(x) exists. We write
f (1)(x) = f ′(x). By induction, for a positive integer n, we say that f is differentiable n + 1
times at x if the function f (n) is differentiable at x. We write f (n+1)(x) = (f (n))′(x).

Theorem 10
Let N be a positive integer and let c ∈ R. Let f be a function differentiable N + 1 times on an
open interval containing c and let x be in this interval. Then

f(x) =
N∑

n=0

(x− c)n

n!
· f (n)(c) +

∫ x

c

(x− t)N

N !
· f (N+1)(t) · dt.

Exercise 29Using any of the convergence criteria, prove that
∞∑
k=0

xk

k!

converges for any value of x.Since it converges and depends on x, we define
f : x 7→

∞∑
k=0

xk

k!
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5 TAYLOR SERIES

Exercise 30Prove the following theorem.
Theorem 11
The number e satisfies

e = lim
n→∞

(
1 +

1

1!
+

1

2!
+ · · ·+ 1

n!

)
.

Exercise 31Same idea for the product; show that this "infinite product" converges, then differentiate it.
g : x 7→ lim

n→∞

(
1 +

x

n

)n

Exercise 32Show that
lim
n→∞

(
1 +

1

n

)n

= 2 +
12

2!
+

13

3!
+ · · · =

∞∑
k=0

1

k!

Definition 15

ex =
∞∑
k=0

xk

k!
= lim

n→∞

(
1 +

x

n

)n
Exercise 33Compute the first partial sums for ex with x = 1 and other values of x and compare with the
ex value of your calculator.
Exercise 34From complex numbers, recall that eix = cosx+ i sinx(1) Write the beginning of the series for eix(2) Write the series for cos(x) and sin(x) (Think about the real part and imaginary partseparately).(3) Prove that these series converge.(4) Calculate cos(1) using this series.(5) Calculate tan(1).

We have already shown that the alternating harmonic series converges. Now we can showmore.
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Exercise 35Prove that the alternating harmonic series ∑
n≥1

(−1)n+1

n
converges to ln(2) i.e.,

ln(2) = lim
n→∞

(
1− 1

2
+

1

3
− 1

4
+ · · ·+ (−1)n+1

n

)
.

Theorem 12
Let f be a function infinitely many times differentiable on an open interval containing c and let
x be in that interval. Suppose that there exists an M such that for each positive integer n the
function f (n) is bounded by M on [x; c] (or [c;x] if c < x). Then the series∑

n≥0

(x− c)n

n!
· f (n)(c) converges to f(x).

Exercise 36For each of the following, calculate the first terms of the Taylor series. Use induction toobtain the general term. Prove that it converges. Use c = 0 for all three.
(1) cos(x)

(2) sin(x)

(3) arctan(x)

Example: A Taylor series for f may converge everywhere without converging to the function f .Consider f given by
f(x) =

{
e−

1
x2 , if x ̸= 0

0 otherwise.One can show that
f (n)(0) = 0, for each positive integer n.The power series ∑n≥0 0 · xn converges to the function which is everywhere 0 and not to f .This is not a contradiction to Theorem 12, as for each x ̸= 0 and each M there exist n and ξbetween 0 and x such that |f (n)(ξ)| > M , so the assumptions of the theorem are not satisfied.

Exercise 37Calculate the Taylor series for √x. You must first find a good value for c, which might meantrying several values.Does it converge for all values of x? (Try using to compute square roots of 0,1,4...)If it does not converge for, say, 10, is it possible to use another value for c?
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Practice exercise 1 Answer page 21For the following, find the partial sums, determine whether the series converges and find thesum when it exists.
(1) 1 +

1

3
+

1

9
+ · · ·+

(
1

3

)n

+ . . .

(2) 1 +
3

4
+

9

16
+ · · ·+

(
3

4

)n

+ . . .

(3) (1− 1

2

)
+

(
1

2
− 1

6

)
+

(
1

6
− 1

24

)
+ · · ·+

(
1

n!
− 1

(n+ 1)!

)
+ . . .

(4) 1

1 · 2
+

1

2 · 3
+ · · ·+ 1

n(n+ 1)
+ . . . Hint: 1

n(n+1) =
1
n − 1

n+1

(5) 1− 2 + 4− 8 + · · ·+ (−2)n + . . .

(6) 3

12 · 22
+

5

22 · 32
+ · · ·+ 2n+ 1

n2(n+ 1)2
+ . . . Hint: 2n+1

n2(n+1)2
= 1

n2 − 1
(n+1)2

(7) 1

1 · 3
+

1

3 · 5
+

1

5 · 7
+ · · ·+ 1

(2n− 1) · (2n+ 1)
+ . . .

(8) 1

3
− 2

5
+

3

7
− 4

9
+ · · ·+ (−1)n−1 · n

2n+ 1

(9) 1

4
+

1

7
+

1

10
+ · · ·+ 1

3n+ 1
+ . . .

(10) ln(1) + ln(2) + ln(3) + · · ·+ ln(n) + . . .

Practice exercise 2 Answer page 21For the following, the general term of the series is given. Test the corresponding series forconvergence:
(1) 3n− 7

10n+ 9

(2) 5

6n2 + n− 1

(3) √
n

1 + 2
√
n+ n

(4) n · e−n

(5) 5n

3n + 4n

(6) nn

(n!)2

(7) 2n · n!
nn

(8) 1

ln(n)

(9) n2

2n

(10) ln(n)

n

Practice exercise 3 Answer page 22Give the Taylor series for the following. State for which values of x they converge.
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(1) 1

1− x

(2) 1

1 + x

(3) 1

1− 2x(4) ln(1− x)

(5) 1

1 + x2

(6) e−x

(7) e−x2

(8) ∫ x

0
e−t2dt

(9) ln

(
1 + x

1− x

)
(10) (1 + x)p for fixed p.
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Answers to practice exercice 1, page 18
(1) 3

2

(
1−

(
1

3

)n). Converges to 3
2 .

(2) 4

(
1−

(
3

4

)n). Converges to 4.
(3) Rewrite as telescoping series: 1− 1

(n+ 1)!
. Converges to 1.

(4) 1− 1

n+ 1
. Converges to 1.

(5) If n is even: −n/2. If n is odd: n/2 + 1/2. Diverges.
(6) Rewrite as telescoping series: 1− 1

(n+ 1)2
. Converges to 1.

(7) 1

2

(
1− 1

2n+ 1

). Converges to 1
2 .

(8) Diverges because lim
n→∞

an =
1

2
.

(9) Diverges. 3n + 1 < 4n (for n > 2) hence 1
3n+1 > 1

4n and ∑N
n=1

1
4n = 1

4

∑N
n=1

1
n whichdiverges hence the series is bounded below by a diverging series and diverges also.(10) Diverges because for ultralarge N , ln(N) ̸≃ 0. Or simply: the terms are increasing andpositive.

Answers to practice exercice 2, page 19
(1) Diverges since for ultralarge N we have 3N − 7

10N + 9
=

3− 7/N

10 + 9/N
≃ 3

10
̸≃ 0

(2) Converges. By comparison: 5

6n2 + n− 1
<

5

6

1

n2
(for n > 2)

(3) Diverges. n1/2

(n1/2 + 1)2
=

(
n1/4

n1/2 + 1

)2

=

(
1

n1/4 + n−1/4

)2

>

(
1

4n1/4

)2

=
1

2n1/2
>

1

2n

(4) lim
n→∞

an+1

an
=

(
1 +

1

n

)
1

e
< 1

(5) Diverges. By ratio test: 5(32 + 4n)

3 · 3n + 4 · 4n
>

5(32 + 4n)

3 · 3n + 3 · 4n
=

5

3
> 1.

(6) Converges. By ratio test: (n+ 1)n

(n+ 1)nn
=

(nn(1 + 1/n)n

(n+ 1)nn
≃ e

n+ 1
≃ 0.

(7) Converges. By ratio test: (n+ 1)2(n+ 1)n!n!

n!(n+ 1)(n+ 1)!nn
=

(n+ 1)n−1

nn
=

1

n

(
1 +

1

n

)n−1

≃ 1

n
e ≃ 0
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(8) Diverges. By comparison: ln(n) < n hence 1

ln(n)
>

1

n
and the harmonic series diverges.

(9) Converges. Ratio test: lim
n→∞

an+1

an
=

1

2
< 1.

(10) Diverges. Integral test: by setting ln(x) = u we get ∫ ∞

1

ln(x)

x
dx =

1

2
ln2(x)

∣∣∣∣∞
1

whichdiverges. By horizontal shifting, this function is below the series.
Answers to practice exercice 3, page 19

(1) 1 + x+ x2 + x3 + x4 + . . . for |x| < 1

(2) 1− x+ x2 − x3 + x4 − . . . for |x| < 1

(3) 1 + 2x+ 22x2 + 23x3 + 24x4 + . . . for |x| < 1/2

(4) −x− x2

2
− x3

3
− x4

4
− . . . for |x| < 1

(5) 1− x2 + x4 − x6 + x8 − . . . for |x| < 1

(6) 1− x+
x2

2!
− x3

3!
+

x4

4!
− . . . for all x

(7) 1− x2 +
x4

2!
− x6

3!
+

x8

4!
. . . for all x

(8) x− x3

3!
+

x5

5 · 2!
− x7

7 · 3!
+

x9

9 · 4!
− . . . for all x

(9) 2x+
2x3

3
+

2x5

5
+

2x7

7
+

2x9

9
+ . . . for |x| < 1

(10) 1 + px+
p(p− 1)

2!
x2 +

p(p− 1)(p− 2)

3!
x3 + ∁p4x

4 + . . . for |x| < 1
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