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1 INFINITE SUMS

1 Infinite sums
The question is: can an unending sum give a result? Does

=1
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k=0

have a meaning?
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Exercise 1
Is it correct to write
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hence z = % + %x and therefore x = 1?

Exercise 2
Using the same method as above, calculate:

r=14+2+4+8+16+...

The question is: what went wrong? In order to answer this sort of question, we will first
study another type of unending process.
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2 Sequences

Definition 1
A sequence is a function

w:{k,k+1,...} CN— R, withkeN.

We also use the notation:

(Un)nzk

for the sequence above, with u, = u(n), for n > 0. We also write (u,) if the set of indices is
obvious or irrelevant. The numbers u,, are called the terms of the sequence.

The context of a sequence is the list of parameters used in its definition, in particular it
contains the integer k — but not n which is a variable.

A finite sequence can be given by enumeration:

1,2,3,4,5
If the rule for obtaining the elements is obvious, dots will be used:
1,2,3,...,20,21,22

If the sequence is infinite, the enumeration is impossible, but if the rule is obvious, dots will
be used to indicate the never ending succession:

1,2,3,4,5,...

Sets are noted with braces {...} If the general term of the sequence can be represented by
a, the notation {a,}, is be used.
The first and last elements of a sequence will be indicated by superscripts and subscripts:

20
(an)n:1

is the notation for the sequence aj,as ... a9, az

Exercise 3
Find (a, )y for the sequence of all natural numbers

For non ending sequences, the symbol (a,)7° can be used to indicate that its number of
terms exceeds all finite terms. (")

Definition 2 (Explicit Relation)
An explicit relation expresses the kth term as a function of k.

"The oo sign expresses the idea of an unending process. This symbol does not represent a number, not even an
ultralarge number. It means “never ending”
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Exercise 4
Write the first terms of the following sequence:

(),

Exercise 5
Write down the first five terms of the sequences specified by their nth terms (in each case,
n € N)

(1) up =4n (4) b, =2n% -1
(2) tn — 2n—1 (5) Tn = (—1)”

2
(3) an =3n —2 (6) en = (—1>"n7:&F I

Definition 3 (Convergence)
Let (un)n>r be a sequence. We say that (uy,),>k converges if lim w, exists i.e, if there is an

n—oo
L € R such that

lim wu, = L.
n—oo

or (explicitly)
(un)n>k converges if there is an observable L € R such that for all ultralarge N

un ~ L.

The number L is the limit of the sequence.

Definition 4 (Non convergence)
A non-convergent sequence may be

e divergent (the terms eventually get ultralarge),

e bounded

m If a sequence has a limit, it does not necessarily “reach” its limit. It may or may not have
terms equal to its limit.

Exercise 6

(1) Find the limit of (%)

n

(2) Find the limit of (#1)
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Definition 5 (Recurrence Relation)
A recurrence relation expresses the kth element of a sequence in terms of one or more of its

predecessors.
In order to know where the sequence begins, it is necessary to state the value of the first term

of the sequence. ¢

“Recall the conditions for an induction proof.

Exercise 7

Write the first terms of the sequences:
Uk—1
E+1

(2 1 =1 up=2 up_1

(1) u1:1 Up =

(3) up =2 u; =3+ 2u;_1

If possible, rewrite them in explicit form. Why do you need an induction proof?

Exercise 8
Consider
Ul = 5
Un—1 . .
if up,—1 is even
u?’L = 2
{3 “Up—1 +1  if u,—q is odd

Use other values for u; and try to see the behaviour of this strange sequence. (The fact that
it ends in the same way for any initial value is the Syracusa conjecture.)

A Graph of a sequence helps to see how it behaves. Joining the plotted dots by a dotted
line (because the domain is defined on natural numbers, the plot will be discrete points)
The sequence {1,—-1/2,1/3,—-1/4,1/5,—-1/6,1/7,—1/8, } is plotted below:

Exercise 9
Give the first terms of the following sequences:

Uy, —
(1) ur =5 up=1+ ;‘01
1
2 uy =0 u,=—"-—
() 1 n 5— w1

If possible, rewrite them in explicit form.
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Exercise 10
Write the first terms of the following sequences:

(M)
(2)

U =0 ue=1 upr =2Ur_1 — Up_2

up =1 wus =3 up=3up_1— 2up_9

Exercise 11

One of the most famous sequences: The Fibonacci sequence.

(1)

(2)

2

up =0 wug=1 up=up-1+uUp—2

Write the first terms (at least ten) of the sequence and describe the behaviour of the
sequence.

Make a new sequence v with the following rule (with u,, the sequence just calculated),

sketch the first terms and describe the behaviour.
U2 U3 Uy Un+1

v = — V) = — vy = — VUn =
(75} u9 us Unp,

Use the same rule as in the beginning, but start with any two numbers for u; and us (even
with ug > u;) and calculate the second sequence v,, made from these terms and sketch
the first terms. Describe the behaviour.

Write the first terms of the sequence: w1 =1 w, =1+ ﬁ Describe the behaviour of
the sequence.

Example: Let a and d be two real numbers and let £ be a positive integer. We define an
arithmetic progression (with common difference d) as follows:

ury =a and upi1 =u, +d for n>k.

It is immediate that u, = a+ (n— k) -d, for all n > k. The context of this sequence is given by
a,d, k.

Example: In a similar way, given a,” € R and k € N, we define a geometric progression (with
common ratio r) by

ur =a and up41 =u, -7 forall n>k.

Then u, = a - "% for all n < k. A context of this sequence is given by a, 7, k.

Exercise 12
What are the conditions for an arithmetic sequence to converge?
What are the conditions for a geometric sequence to converge?

“Fibonacci was an Italian mathematician in the Xllth century; it was he who introduced Arab-Indian numerals
into Europe.
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Exercise 13
Describe the behaviour of the following sequences:

(M (=",
1
1+ u,

(2) wi=1 upp1=1-

(3) (cos (n5)),,

(4) (random numbers between -1 and 1)

(5) = n(n+1)(n+2)

Definition 6
The sequence (uy)n>k is:

(1) increasing if u, < u,, for all m >n >k,
(2) decreasing if u, < uy, for allm >n >k,
(3) monotone if (uy),> is either increasing or decreasing.

(4) bounded above if there is an M € R such that u,, < M for all n > k (the number M is
an upper bound),

(5) bounded below if there is an M € R such that u, > M for all n > k (the number M is a
lower bound),

(6) bounded if the sequence is either bounded above and bounded below.

Let (upn)n>k be a sequence. If it is bounded above then by the context principle there is an
observable M which is also an upper bound. Conversely, if there is an observable M such that

uy, < M, for all observable n,
then by the context principle this statement is true for all integers (including ultralarge integers).
The same remark holds for lower bounds.

Definition 7 (Least Upper Bound)
A least upper bound M to a nonempty set A of real numbers is a value such thatx > M = x ¢ A
and for any N < M there is an x € A such that x > N.

A similar definition holds for greatest lower bound.

Theorem 1
A nonempty set of real numbers bounded above has a least upper bound (Lu.b). A nonempty set
of real number bounded below has a greatest lower bound (g.L.b)



2 SEQUENCES

The proof of theorem 1 needs closure in two versions: the usual one:
"If there is an z satisfying a property, then there is an observable x satisfying that property."
and its contrapositive

"If all observable x satisfy a property, then all x satisfy that property."

Exercise 14
Assume a set A has an upper bound.
The proof of theorem 1 requires to justify the following steps:

e Then there is an observable a € A and an observable upper bound B. Justify.

e Let N be ultralarge. Divide the interval [a, B] in N even parts. Let zj, = a + k- 252, Let
a; be the smallest value in the partition which is still an upper bound for A and let ¢ be
its observable neighbour.

Justify that z; has an observable neighbour.

e c is the least upper bound. Explain and this ends the proof.

Exercise 15
This theorem is not true if one replaces "real" by "rational”. Consider

{reQ]|2?<2}

Why does this not have a a least upper bound?

Exercise 16
prove the following theorem:

Theorem 2 (Monotone Convergence)
Any increasing sequence which is bounded above is convergent and has a limit. Similarly, any
decreasing sequence which bounded below is convergent and has a limit.

Construction of a sequence to calculate V2

The square root of 2 (or any number) can be computed by repeated approximation. Here is one
of many methods:

Let \/a be a first approximation to v/2  (the leftover part b is such that a + b = 2)

Va+b=/a+ where § is the error on the result

The approximation is such that we hope that § < 1, neglect 52 which is even smaller, thus
obtaining the following approximation:

a+b=a+2vad +6*~a+2Vad
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from which we get

b

—— x4

2v/a
thus \/a + ﬁ will be a better approximation than y/a

Let \/a be written v, then a = vZ and as a + b = 2 we have b = 2 — v2, thus v + 25;)2 is a
better approximation to v/2 than v.
A sequence can be constructed:

2
2—a;

Gp41 = Gp + a1 =first approximation

an
Compute the first terms of the sequence for different approximations: a3 =1, a3 = 1.5 or

even a; = 2
The following values are first a computer value for /2, followed by sequence value: ag with
(a1 = 1.5)
1.41421356237309504880168872420969807856967187537694807317667973798...
1.41421356237309504880168872420969807856967187537694807317667973800...

Exercise 17
Write the sequence that calculates v/3 and calculate the first approximations.

Definition 8
Let (un)n>r be a sequence. We say that (uy,),>k is a Cauchy sequence if

un’ =~ uy, for all positive ultralarge integers N, N'.

A context is given by the sequence. By the context principle, a sequence is a Cauchy
sequence if and only if this condition is met for any extended context.
Exercise 18

Prove the following theorem:

Theorem 3
Let (un)n>r be a sequence. Then (uy) converges if and only if (u,),>k is a Cauchy sequence.

Exercise 19
Back to Fibonacci. Use theorem 3 to prove that the sequence of ratios converges. Show that
the recurrence relation has a fixed point. Then show that this fixed point is the limit.

3 Series

Let (un)n>k be a sequence. It is possible to define another sequence by considering the partial
sums s = ug and Sp41 = Sp + Up+1, for n > k. In other words, for a positive integer N we
have

N
SN = Ug + Ugy1 + - HuN = E U
n=~k

10



3 SERIES

Definition 9 (Partial Sum)
A partial sum is the sum up to a given index number. It is indicated by

n

1 2
31:2 5222 S :Z
i=1 =1

=1

Definition 10 (Infinite Series)

An infinite series is the limit of its partial sums.

An infinite series has a sum iff it converges.

Let (un)n>r be a sequence. A series is the sequence

(24)...

of the partial sums. We will denote this series by

00
E Up,.
n==k

This definition is equivalent to:

Definition 11 (Convergence of a Series)
A series converges iff there is an observable L such that for any ultralarge N

Partial sums represent successive approximations of the total sum

Uk + Ug41 + Ugr2 + - ..

which is not necessarily a real number in the sense that it is not quaranteed that the partial

sums converge.

Definition 12

Let )", -, un be a series. We say that )", -, u, converges to L if the sequence of patial sums

converge to L.

If the series converges, then the total sum is equal to the limit of the sequence of partial

sums. As before, if the limit exists, it is observable

Exercise 20

Here is a well known series for which it may be possible to guess the limit. However, the

question is how to prove it.
Calculate

1
25

=0

11
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Exercise 21
Same question (also graphically) for

M8
] =

e
Il
—

Exercise 22
Same question for

=1
2
k=1

Example: Consider the arithmetic series Z Up, With u; = a and u, =a+ (n—1) - d.
n>1

N
A context is given by u. To establish the value of Zun first note that

n=1
1+2+---+N—1:;(1+(N—1)+(2+(N—2))+---+(N—1)+1)):]\w;_l)
thus
ia—i—(n—l)-d = Nﬂ—kdin—l = N~a+d‘N.(‘Zl) = g@a—i-(N—l)d) = g(uﬁ—uN).
If N is ultralarge, then
ZN:un = —(2a+ (N —1)d)
n=1

is also ultralarge.
Hence an arithmetic series cannot converge unless a = d = 0.

Example: Consider the geometric series Zun with u; = a and u,, = a - ™1, with a,r €R

n>1
N
(@ #0). Let sy = Z up. Note that:
n>1
sN:a+ar+ar2—|—---+arN_1
multiply by (1 —r) and obtain a — ar™ = a(1 — r¥)
therefore sy - (1 —7) =a- (1 —7") and
1— N
SN=a- r ,  ifr#£1l
1—7r

Note that if » = 1 then sy = a - N so with a common ratio equal to 1, if the initial term is not
zero, the series diverges.
It is simple to check that

diverges if |r| > 1
Z a-r" 1
=~ converges to a - — if |r| < 1.

12
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Exercise 23
For a geometric series with 2 as first term and r = 3/4. Write the first terms. Calculate the
limit.

Exercise 24
Let

o0

> 3-107F

k=0

Does this series converge and if so, what is its limit?

Exercise 25
Calculate (if the value exists)

> 09997
j=0
4 Convergence Criteria
Exercise 26
Use theorem 3 to prove the following.
Theorem 4
Let Z uy, be a series. Then Z uy, converges if and only if
n>k n>k

N/
for any ultralarge numbers N < N’ Z Up ~ 0
n=N

Theorem 5 (Comparison test)
Let (un)n>r and (vy)n>k be two sequences with non-negative terms such that

Uy > Uy, foreachn > k.

If the series E up, converges then the series Z vy, converges also.
n>k n>k

The contrapositive of the previous theorem can be used to prove the divergence of a series.

Theorem 6
Let (u,) be s sequence of positive terms. If Z uy,, converges then, for ultralarge N uy ~ 0.
n>k

13
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Example: The converse of this theorem is false: consider the harmonic series

>

n>1

1
We have lim — = 0. We will show now that this series diverges.
n—oo n

We observe that

ST U (L [N PR (- N SR

R R D T VY B S Y
Y (I I S o
BEHUTA T Ty Tg) =™ g T~ 2’

By induction, we see that
1
SQN Z 1 + N . 5

But this implies that the series diverges because if N is ultralarge then 2V is ultralarge and
Son > 1+ % is ultralarge hence not observable.

Theorem 7 (Integral Test) N
Let f : [k,00[— R be a continuous decreasing and positive function. Let F(N) = / f(z) - dx.
k

Then the series Z f(n) converges if and only if lim F(N) exists.
ey N—o0

Example: Consider the series >, -, 5. Let f :]0,00[ by x — ;. It is a positive continuous
decreasing function. Then

Then limy_;o0 F/(N) =1 so the series >, -, # converges.

Exercise 27
The Riemann series is

1
Z— with p € R.
npb

n>1

Show that the Riemann series converges if and only if p > 1.

The two following criteria use comparisons with some geometric series.

14
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Theorem 8 (Ratio Test)
Let Z uy, be a series with strictly positive terms.

n>k

If
UN+1

L2\

N is ultralarge = ~ [

then
(1) if L > 1 the series diverges,

(2) if L <1 the series converges.

1 1
The ratio test is inconclusive in the case L = 1: we have seen that Z — diverges but Z —
n n

n>1 n>1
converges.

Definition 13
A series Y i~ Un (or (un)n>k) is an alternating series, if uy, - u, 1 < 0 for each n > k.

Theorem 9

Let (un)n>k be an alternating series decreasing in absolute value. If lim wu, =0 then ) -, un
- n—oo -

converges.

Example: This shows that the harmonic alternating series defined by

converges.

Exercise 28
Show that if one considers the series > 7 (—1)* then by rearranging the order of the terms,
the sum can be made to be equal to any positive or negative number.

m This is a crucial point. A never ending series can yield strange things! Because it never
ends. This is why it is important to work on the partial sums. (More difficult theorems state
under what conditions can the terms of a series be rearranged without changing the result.)

5 Taylor Series

The idea of this part is to represent a function by a series > -, a, - (x — ¢)" such that the
series converges to f(x) for some values of 2 around a point c. This is called the Taylor series
for f at c.

We first define the nth derivative of f by induction on n.

Definition 14
Let f be a function. We say that f is differentiable once at x if f'(x) exists. We write

fW(z) = f'(x). By induction, for a positive integer n, we say that f is differentiable n + 1
times at x if the function ™ is differentiable at z. We write f"1)(z) = (f™)(x).

15
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Theorem 10
Let N be a positive integer and let c € R. Let f be a function differentiable N + 1 times on an
open interval containing ¢ and let x be in this interval. Then

N z—c)" T (p—t)N
f(x)—z(n!)'f(")(cwr/ %.fuvﬂ)(t).dt_

Exercise 29
Using any of the convergence criteria, prove that

OO:E
2

converges for any value of x.
Since it converges and depends on z, we define

foka'
=0

Exercise 30
Prove the following theorem.

Theorem 11
The number e satisfies

n—00 1! 21

. 1 1 1
e=lm (1+=+=+--+— .
n!
Exercise 31

Same idea for the product; show that this "infinite product" converges, then differentiate it.

n
g:x+— lim (1+£>

n—00 n

Exercise 32

Show that ~
) 1\" 12 13 1
tm (140) —2e g g - Y g
k=0
Definition 15
oo mk n
xr __ _ 3 _
=g ()

16
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Exercise 33
Compute the first partial sums for e with x = 1 and other values of x and compare with the
e” value of your calculator.

Exercise 34
From complex numbers, recall that €** = cosx + isinx

(1) Write the beginning of the series for ¢®

(2) Write the series for cos(x) and sin(x) (Think about the real part and imaginary part
separately).

(3) Prove that these series converge.
(4) Calculate cos(1) using this series.

(5) Calculate tan(1).

We have already shown that the alternating harmonic series converges. Now we can show
more.
Exercise 35

(_1)n+1
Prove that the alternating harmonic series E —_—
n

n>1

1 1 1 _q)nl
ln(2)27lli_>rgo<1—2+3_4+...+(r)b>'

converges to In(2) i.e,

Theorem 12

Let f be a function infinitely many times differentiable on an open interval containing ¢ and let
x be in that interval. Suppose that there exists an M such that for each positive integer n the
function f) is bounded by M on [z;c] (or [c;z] if ¢ < x). Then the series

Z (@—=o" F™(¢) converges to f(x).

n!
n>0

Exercise 36
For each of the following, calculate the first terms of the Taylor series. Use induction to
obtain the general term. Prove that it converges. Use ¢ = 0 for all three.

(1) cos(z)
(2) sin(x)

(3) arctan(x)

17
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Example: A Taylor series for f may converge everywhere without converging to the function f.
Consider f given by

efz%, ifx#0
0 otherwise.
One can show that
™ (0) =0, for each positive integer n.

The power series > -, 02" converges to the function which is everywhere 0 and not to f.
This is not a contradiction to Theorem 12, as for each x # 0 and each M there exist n and &
between 0 and z such that |f(™)(£)| > M, so the assumptions of the theorem are not satisfied.

Exercise 37

Calculate the Taylor series for /z. You must first find a good value for ¢, which might mean
trying several values.

Does it converge for all values of 7 (Try using to compute square roots of 0,1,4...)

If it does not converge for, say, 10, is it possible to use another value for ¢?

Practice exercise 1  Answer page 25
For the following, find the partial sums, determine whether the series converges and find the
sum when it exists.

(1) 1+1+1+---+<1)n+...

3 9 3
3 9 3\"
N1+ 2 (2) 4.
@ 1+ +5+ +<4> +
1 1 1 1 1 1 1
3) (12 S S FTORERY (. B
@ (1-5)+ (-5) + (6 a) v ()
1 1 1
4) — 4 Hint: L —1_ _1_
@ 5t 3" +n(n+1)+ int: ool = & — o
5) 1—24+4—-8+4---+(-2)"+...
3 5 2n +1 e 2ndd 1 1
©) 75t 5.3z T T 2n+ 12 Hint: Gz = 22 ~ Grn?
L S S ! +
13735 5.7 @n—1)-@2n+1)
1 2 3 4 (-1)nt.n

8) —— 4oy 27

()3 5+7 9+ * 2n+1
1 1 1

(9)1—1—?—1—5—1—--'4—3”_’_14—...

(10) In(1) +In(2) + In(3) + - - - + In(n) + ...

18
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Practice exercise 2 Answer page 25

For the following, the general term of the series is given. Test the corresponding series for
convergence:

3n—17 n"
W o9 ©) Fiye
) 2™ . nl
@) 6n2+n—1 ) nn
1
Vi )
O T mtn In(n)
2
(4) nee 0 5
6) 5 (10) )

Practice exercise 3  Answer page 26
Give the Taylor series for the following. State for which values of x they converge.

(1) 1im (6) e™*
(7) e

i z

. (8) / et dt
Sy ’
(4) In(1 - 2) @)m<ifi)

1
() 1122 (10) (14 z)? for fixed p.

19
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Answers to practice exercice 1, page 22

3 n\"

(1 3 <1 — <3> > Converges to %
3 n
(2) 4 <1 — (4) > Converges to 4.

(3) Rewrite as telescoping series: 1 — . Converges to 1.

(n+1)!
1
(4) 1 — ——. Converges to 1.
n+1
(5) If nis even: —n/2. If n is odd: n/2 + 1/2. Diverges.

(6) Rewrite as telescoping series: 1 — 5. Converges to 1.

1
(n+1)

1 1 )
(7) = <1 o 1). Converges to 5.

(8) Diverges because ILm an = =

9) Diverges. 3n+ 1 < 4n (for n > 2) hence =—1— > L and N L =1 N: L which
g 3n+1 4n 4 n=1n

n=1 4n
diverges hence the series is bounded below by a diverging series and diverges also.

(10) Diverges because for ultralarge N, In(NN) % 0. Or simply: the terms are increasing and
positive.

Answers to practice exercice 2, page 22

3N -7 3—-T7/N 3
(1) Diverges since for ultralarge N we have ON 9~ 107+ 9//N ~ 10 #0

1
(2) Converges. By comparison: 6712—1—571—1 < %ﬁ (for n > 2)

3 D N A 1 2> 1\ 1 1
(3) Diverges. m'24+1)2 \nl2+1)  \nl/A4n-1/4 Anl/4 ] T 9pl/2 = m

1\ 1
(4) lim 22+l — <1+)<1

n—o0  QOp nje

5(32 +4m) 5(32 +4") 5
> =->1
3-3n44.-477 3.3n43.4n 3

(n+1)"  (@"A+1/n)" e

(5) Diverges. By ratio test:

(6) Converges. By ratio test: e - mEhmr Sl ~ (.
1)2(n + 1)n'n! nrto " 1
(7) Converges. By ratio test: (n+1)"(n+ Lnin = (n+1) =—(1+- ~—ex~0
nln+1)(n+ 1)In" nn n n n

21



5 TAYLOR SERIES

1 1

(8) Diverges. By comparison: In(n) < n hence In(n) > - and the harmonic series diverges.

n 1
(9) Converges. Ratio test: lim Intl _ 2 .
n—o00 @y 2
1 1 o
(10) Diverges. Integral test: by setting In(z) = u we get / n(w)d:z: = §ln2(x) which
1 T 1

diverges. By horizontal shifting, this function is below the series.

Answers to practice exercice 3, page 22
M) 14+z4+22+23+21+.. for|z] <1
) 1—z42®>—a3+21— .. for|z] <1

(3) 142z + 2222+ 2323 + 2% + .. for |z| < 1/2

(4) —$—:C;—1§—T—... for |z| < 1

G) 1—a?+at —ab 428 — .. for|z] <1

(6) 1—1‘4—3;—?—1—95—... for all =

(7) l—xz—i—i—i—i—f... for all

(8) x—§+5?52! —ﬁ;jtgi! — .. forall z

223 2% 227 229
9) 2 — t— 4+ —+ —+... f <1
(9) 2z + 3 + 5 + 7 + 9 + or |z

—1 —1)(p—2
(10) 1+px+p(p2|):c2+p(ps)'(p)x3+ﬂix4+... for |z] < 1

22
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geometric progression, 7

harmonic series, 13
higher order derivative, 15
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non convergence, 5
oscillating, 5

partial sum, 10
partial sums, 10
periodic, 5

ratio test, 14
recurrence relation, 6

sequence, 4
arithmetic, 7
Cauchy, 9
convergence, b
geometric, 7

series
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convergence, 11
Riemann, 14
Taylor, 15

Taylor series, 15
convergence, 16
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integral, 13
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