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Higher Level

This version has proofs and commentsfor the teacherThese come in frames like this one, and for this reason, the page numbers are not thesame as on the student handout version.
The proofs given must not be understood as “the” proofs, but as the ones which over the
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Infinity itself looks flat and uninteresting. [...] The cham-
ber [...] was anything but infinite, it was just very very
very big, so big that it gave the impression of infinity far
better than infinity itself.
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1Velocity and Position
Exercise 1Suppose the velocity 1 of a car is constant and equal to 60km/h.

(1) Let f be the function which describes the position of the car with respect to time.Draw the graph f for t ranging from 0 to 3 hours.
(2) Let v be the function which describes the velocity of the car with respect to time.Draw the graph of v for t ranging from 0 to 3 hours.
(3) Given the position graph, how can one find the velocity of the car at any given time?
(4) Given the velocity graph, how can one find the position of the car after any given time?
△! Note the difference: velocity (deduced from position) is local. It is possible to givethe velocity at a given time. Position (deduced from velocity) is global. It is only possible tofind the variation of the position over an interval of time.

Exercise 2The velocity of a car (in km/h) is given by the following function with respect to time (in h):(decimal division of hours for simplicity)
v : t 7→


60 if 0 ≤ t ≤ 0.5

120 if 0.5 < t ≤ 2

80 if 2 < t ≤ 2.5

60 if 2.5 < t ≤ 3Calculate the positions at t = 1, t = 2 and t = 3.Draw the velocity graph and indicate on the velocity graph where the position at t = 2 canbe drawn.

1The velocity is speed with a direction. Speed is always positive (or zero); velocity can be negative.
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CHAPTER 1. VELOCITY AND POSITION

The following curve can be approximated by a piecewise linear function whose slope is easilycalculated by pieces. If this curve represents the position function of a moving body, the linearpieces may given approximate representation of the velocity function.

1 2 3 t
10
20
30 km

The following area under a curve can be approximated by a “staircase” function whose areais calculated by adding the areas of the rectangles. If this curve represents the velocity functionof a moving body, the rectangles may give an approximate representation of the position function.

1 2 3 t
10
20
30 km/h

The main goal of the subject called mathematical analysis will be to check when and howto approximate a curve by pieces of straight lines and when and how to approximate areas byrectangles and to understand what these can be used to calculate. Intuitively, it should seemclear that in order for the approximation to be good, the pieces of straight lines or the rectanglesmust be small – or that the number of pieces is large. The crucial questions are: How small?and How large?
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2Basic Principles
Exercise 3Hold a pencil in your hand. Do not move.Now drop the pencil.

First the pencil was motionless. Then it was in motion.How did the motion start? How is the transition from "not moving" to "moving"?

Exercise 4If δ is a positive value which is extremely small (even smaller than that!),
(1) what can you say about the size of δ2, 2 · δ and −δ?
(2) what can you say about 2 + δ and 2− δ?
(3) what can you say about 1

δ ?

Note for the teacher: there is no “tending to”. δ is tiny; just as its reciprocal is huge.Note that “tiny” must be defined to be small in absolute value, since −1010 is smallerthat 5...
“tending to” yields an informal metaphor of x moving towards a: recall that numbers
do not move...
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CHAPTER 2. BASIC PRINCIPLES

0 1 2 3 4 5

2 + δ

2 2 + δ 2 + 2δ2− δ

31

Zooming in
Exercise 5If N is a positive huge number (really very huge!),

(1) what can you say about N2, 2N and −N?
(2) what can you say about N + 2 and N − 2?
(3) what can you say about 1

N ?
(4) what can you say about N

2 ?
Exercise 6Let f : x 7→ x2, and let δ be "vanishingly small" and positive.

(1) Draw the result of a zoom on f centred on ⟨2; 4⟩ so that δ becomes visible.Show, on the drawing, the values 2 and f(2), 2 + δ and f(2 + δ), 2− δ and f(2− δ).What does the curve look like?
(2) For the same function, draw the result of a zoom centred on ⟨1; 1⟩Show, on the drawing, the values 1 and f(1), 1 + δ and f(1 + δ), 1− δ and f(1− δ).
(3) Similar question for a zoom centred on ⟨0; 0⟩.
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CHAPTER 2. BASIC PRINCIPLES

Exercise 7Draw the result of zooms so that δ becomes visible for
g : x 7→ x3, and h : x 7→ |x|For g: centres are ⟨1; 1⟩, ⟨2; 8⟩ and ⟨0; 0⟩For h: centres are ⟨1; 1⟩, ⟨2; 2⟩ and ⟨0; 0⟩

Exercise 8Draw a zoom centred on ⟨0; 0⟩ and another zoom centred on ⟨0;−1⟩ for
k : x 7→


−1 if x < 0

0 if x = 0

1 if x > 0
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CHAPTER 2. BASIC PRINCIPLES

When we say that δ is “tiny”, we want it to be tiny compared to all the parameters involved;this leads to the following definition:
Definition 1
The context of a property, function or set is the list of parameters used in its definition. The
context can be a single number.

A context is extended if parameters are added to the list.Before defining more precisely what it means to be “tiny” we must first clarify what it meansto be observable:
Observability

(1) Numbers defined without reference to observability are always observable – or standard.
(2) If a is not observable in the context of b, then b is be observable in the context of a.(the context from which both are observable is the common context).
(3) Closure: If a number satisfies a given property, then there is an observable numbersatisfying that property.
(4) A property referring to observability is true if and only if it is true when its context isextended.A consequence of (3) is that the results of operations between two numbers are in theircommon context.The word "observable" , by convention, refers to a context. Informally: the context is theparameters, sets and functions the statement is about. Therefore to determine the context of astatement, one must be able to understand it and describe what it says and about what it sayssomething.But: a consequence of (4) is that it does not matter what the context is precisely provided itcontains at least all parameters involved.
All "familiar" numbers such as 1; 3; 1010;

√
2 or π are always observable, or standard, butalso – in general –

Theorem 1
f(a) is observable.

This refers to the context, by the word "observable". The only parameters of this propertyare f and a. This is the context.
This is a consequence of closure: If there is a value b such that f(a) = b then there isan observable such value. Since the output of a function is unique, f(a) is observable.

Non observable values do not show up unless explicitly summoned.
Definition 2
A real number is ultrasmall if it is nonzero and smaller in absolute value than any strictly
positive observable number
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CHAPTER 2. BASIC PRINCIPLES

This definition makes an implicit reference to a context.
△! Note that 0 is not ultrasmall.

Principle of ultrasmallness
Relative to any context, there exist ultrasmall real numbers.Such an ultrasmall number is then part of an extended context.Given a context, if ε is ultrasmall then ε is not observable.

Definition 3
A real number is ultralarge if it is larger in absolute value than any strictly positive observable
number

△! Note the asymmetry: if h is ultrasmall relative to x, then it is not observable. But
x is observable relative to h (see the third item of the observability pricniple), hence x is notultralarge relative to h. With respect to a given numberultrasmall numbers are somewhere here

0

/ / / /

With respect to a given numberultralarge numbers are somewhere over there
/ ///

0
Definition 4
Let a, b be real numbers. We say that a is ultraclose to b, written

a ≃ b,

if b− a is ultrasmall or if a = b.This definition makes an implicit reference to a context.In particular, x ≃ 0 if x is ultrasmall or zero.If a ≃ b then a and b are said to be neighbours. If a is a neighbour of b and is observable(relative to some context) then a is the observable neighbour of b.
Theorem 2
Relative to a context: If a and b are observable and a ≃ b, the a = b.
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CHAPTER 2. BASIC PRINCIPLES

Exercise 9Prove the previous theorem. (you will need to refer to closure)
If a ≃ b then a− b ≃ 0; which means that a− b is ultrasmall or zero. By closure, it isobservable, hence cannot be ultrasmall.

A rational number may have an observable neighbour which is not rational. The number √2is always observable because it is completely and uniquely defined by the parameter 2. Relativeto this context consider an ultralarge N and take the first N digits of √2. This is a rationalnumber which is not observable. Yet it is ultraclose to an observable number which is √
2.The existence of an observable neighbour is given by the following

Principle of the observable neighbour
Relative to a context, any real number x which is not ultralarge can be written in the form
a+ h where a is observable and h ≃ 0.

Exercise 10Show that if x has an observable part, then it is unique.
Assume a and b are observable neighbours, then a ≃ x ≃ b ⇒ a ≃ b and by theorem2, a = b.

This unique number is the observable neighbour of x.
Exercise 11Prove the following:
Theorem 3
Let [a; b] be an interval. Show that if x is in [a; b], then the observable part of x is not outside
[a; b].

Assume by contradiction that x ∈ [a, b] and that c ≃ x is outside, and larger than b.We then have x ≤ b ≤ c with x ≃ c. But this implies b ≃ c so b = c. (Same for c ≤ a.)
The observability is given by a and b.

Exercise 12Prove the following:(1) If ε is ultrasmall relative to x then 1
ε is ultralarge relative to x.

(2) If M is ultralarge relative to x then 1
M is ultrasmall relative to x.
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CHAPTER 2. BASIC PRINCIPLES

Exercise 13Prove the following theorems (together they give all the rules needed for analysis and willbe referred to by "ultracomputation" or "ultracalculus"):
Theorem 4
Let ε and δ be ultrasmall relative to a context and let a be observable and not zero.

(1) Then: a · ε is ultrasmall.

By contradiction. Assume a · ε ̸≃ 0. Then by definition, there is an observablestrictly positive b such that |a · ε| = |a| · |ε| ≥ b > 0. But then |ε| ≥ b
|a| > 0. Byclosure b

|a| is observable. This contradicts that ε is ultrasmall.
The proof by contradiction assumes the existence of (one) counterexample. A
direct proof requires to show something about all observable positive numbers.

(2) Then: ε+ δ ≃ 0

0 ≤ |ε+ δ| ≤ 2 ·max{|ε|, |δ|} which is two times an ultrasmall, whic is ultrasmallby the previous point.
(3) Then: ε · δ is ultrasmall

Obvious, but if necessary: 0 < |δ| < 1 so 0 < |ε · δ| < |ε|

(4) If a ̸= 0 Then: a

ε
is ultralarge

Again by contradiction: assume it is not ultralarge, then there is an observable
b > 0 such that |aε | =

|a|
|ε| < b ⇒ |a| < |b| · |ε| ≃ 0, which contradicts that a isobservable.

The following properties can be proven later, when after some specific exercises, a
general formula is need. Could be postponed to beginning of chapter 5.

Theorem 5 (Ultracomputation)
Relative to a context: If a and b are observable and not zero and if a ≃ x and b ≃ y,

(1) a+ b ≃ x+ y

(2) a− b ≃ x− y

Write x = a + ε, y = b + δ. Then
x+y = a+ε+b+δ and since ε+δ ≃ 0by theorem 4 we have the conclusion.

(3) a · b ≃ x · y

as before, then x·y = (a+ε)·(b+δ) =
a · b + a · δ + b · ε + ε · δ ≃ a · b bytheorem 4

(4) If also b ̸= 0, a
b
≃ x

y
.
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CHAPTER 2. BASIC PRINCIPLES

For the last item of theorem 5, it is enough to show:
Relative to a context. If b is observable and b ̸= 0 and if b ≃ y then 1

b
≃ 1

y

and use item 3 to conclude.
Writing y = b + δ and 1

y = 1
b+δ = 1

b + h leads to b = (1 + bh)(b+ δ︸ ︷︷ ︸
≃b

) ≃ (1 + bh) · b,
hence 1 + bh must be ultraclose to 1, so bh ≃ 0 and h ≃ 0.
More tricky but more powerful: good for maths 2:
b is observable and not zero, hence for y ≃ b, y is not ultrasmall nor ultralarge.Therefore 1

y is not ultralarge nor ultrasmall, hence it has an observable neighbour
c ≃ 1

y . We have cy ≃ 1 and then 1
c ≃ y ≃ b. But by closure, 1

c is observable, so 1
c = b.So 1

y ≃ 1
b .

Practice exercise 1 Answer page 19Consider a context.
(1) Give an example of x and y such that x ≃ y but x2 ̸≃ y2.
(2) Give an example of x and y such that x ≃ y but 1

x ̸≃ 1
y .

Practice exercise 2 Answer page 19Relative to a context.In the following, assume that ε, δ are positive ultrasmall and H,K positive ultralarge num-bers. Determine whether the given expression yields an ultrasmall number, an ultralarge numberor a number in between.
(1) 1 +

1

ε

(2) √
δ

δ

(3) √
H + 1−

√
H − 1

(4) H +K

H ·K

(5) 5 + ε

7 + δ
− 5

7

(6) √
1 + ε− 2√
1 + δ

Practice exercise 3 Answer page 19Relative to a context find ultrasmall ε and δ (or the relation between them) such that ε

δ
is:
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CHAPTER 2. BASIC PRINCIPLES

(1) not ultralarge and not ultrasmall,(2) ultralarge, (3) ultrasmall.

△! The previous exercise show that if no relation is known between ultrasmall numbers
ε and δ, their quotient can be of any possible magnitude.

Contextual NotationThe only acceptable properties are those that do not refer to observability or those that usethe symbol “≃”.
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CHAPTER 2. BASIC PRINCIPLES

This is an extremely important restriction, even though it is probably not necessary tomention it otherwise than saying it is a rule which must be followed. The thing is thatwith ultrasmall numbers not any property can be used to determine a set. As a directexample: relative to the standard context, it is not possible to collect all ultrasmallnumbers inot a set. If we could, we would have a set which is bounded above (by 1) butwhich has no least upper bound, which would contradict that all sets of real numbersbounded above have a least upper bound.Recall that the context is the parameters that the statement is about. When we definea set by a property, this must state a property for the element to belong to the set,hence if ultrasmall values are invoqued they must be relative to the context containingthe element, and it cannot be ultrasmall relative to itself.In fact, ultrasmall values can nonly be used to determine a property such as in thederivative: they appear as “dummy variables”.Here is another example of what would go wrong:Let obs1(x) stand for the observable neighbour of x relative to the standard context.Consider the rule x 7→ obs1(x). If this defined a function, then zooming on the graphwe would see a horizontal line on any ultrasmall neighbourhood (all points on anultrasmall interval have the same observable neighbour.) There is no value where wecould point to a discontinuity yet this everywhere horizontal “continuous” graph (if itexists) is increasing!The problem here is not referring to the context containing x.
The Problem of Induction
For students, induction is not the natural way to think about mathematical objects (notyet). Some mathematicians are troubled by some nonstandard statements which seemto contradict induction. The question is addressed here.
Statements about observability are always relative to the context of the statement.(Contextual statements)

• Statements that do not refer to observability can be used in induction proofs(these are the classical induction proofs).
• Statements that use “≃” can also be used in induction proofs.
• Statements that use “standard” cannot be used in induction proofs since thereis an absolute reference to a context.

Thus even though it is true that if n is observable then n + 1 is observable, onecannot deduce that all numbers are observable. This statement is about n, hence thecontext contains n. By the convention that observable always refers to the context, nis observable can be rewritten as n is as observable as itself – which is true! So byinduction, we would get, at best, that every number is as observable as itself.
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CHAPTER 2. BASIC PRINCIPLES

Answers to practice exercises

Answers to practice exercice 1, page 14(1) Let x = N be ultralarge, and y = N + 1
N so x ≃ y but x2 = N2 ̸≃ N2 + 2 + 1

N2 = y2.(2) Let h be ultrasmall, then let x = h and y = h2. Then x ≃ 0 and y ≃ 0 hence x ≃ y.Then 1
h and 1

h2 are both ultralarge and 1
h2 − 1

h = 1
h(

1
h − 1). By ultracomputation, this isultralarge, hence 1

x ̸≃ 1
y .

Answers to practice exercice 2, page 14The terms ultrasmall or ultralarge all refer to a given context.(1) As 1
ε is ultralarge 1 + 1

ε is ultralarge.
(2) We have √

δ
δ = 1√

δ
which is ultralarge.(If δ < c for any observable c, then √

δ <
√
c and √

δ ≃ 0 hence 1√
δ

is ultralarge.)(3) Maybe surprisingly, this is ultrasmall. To see this we multiply and divide by the conjugate:
√
H + 1−

√
H − 1 =

(
√
H + 1−

√
H − 1)(

√
H + 1 +

√
H − 1)√

H + 1 +
√
H − 1

=
(H + 1)− (H − 1)√
H + 1 +

√
H − 1

=
2√

H + 1 +
√
H − 1

.

H is assumed positive, its square root (plus or minus 1) is also a positive ultralarge. Thesum of 2 positive ultralarge numbers is ultralarge hence the quotient is ultrasmall.
(4) H +K

HK
=

1

K
+

1

H
is ultrasmall.

(5) 5 + ε

7 + δ
− 5

7
=

35 + 7ε− 35− 5δ

49 + 7δ
=

≃0︷ ︸︸ ︷
7ε− 5δ

49 + 7δ︸ ︷︷ ︸
≃49

is ultrasmall or zero.

(6)
≃−1︷ ︸︸ ︷√

1 + ε− 2√
1 + δ︸ ︷︷ ︸
≃1

≃ −1, hence not ultralarge and not ultrasmall.
Answers to practice exercice 3, page 14(1) Take ε = δ then ε

δ
= 1.

(2) Take δ = ε2, then ε

δ
=

1

ε
is ultralarge.

(3) Take ε = δ2, then ε

δ
= δ is ultrasmall.
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3Derivatives
Exercise 14Let

f : x 7→ x2The graph of this function is a curve (a parabola). Zoom in on the point ⟨2, 4⟩. 2 and 4 arealways observable. Consider the value of the function at 2+∆x, and draw a straight line passingthrough ⟨2, 4⟩ and ⟨2 + ∆x, f(2 + ∆x)⟩.• What is the slope of this straight line?• What is the observable neighbour of this slope?
Definition 5
A real function f defined on an interval containing a is differentiable at a if there is an observable
value D such that, for any ∆x

f(a+∆x)− f(a)

∆x
≃ D

Then D = f ′(a) is the derivative of f at a.The "for any ∆x" means that the value of D must not depend on the choice of the ultrasmall
∆x, in particular, whether it is positive or negative.When the derivative exists, it is the observable neighbour of f(a+∆x)− f(a)

∆x
.

△! This is a statement about f at a, hence the context is the list of parameters of fand a.Metaphorically, finding the derivative can be described by: Zoom in. If what you see isindiscernible from a straight line, then measure the slope of that line. Zoom out. Drop what youcannot see anymore.
Exercise 15Using definition 5 calculate the derivatives (if they exist) of the following:(1) f : x 7→ 3x2 + x− 5 at x = −2 and x = 2.(2) g : x 7→ 2x3 − 2 at x = 1 and x = 0.(3) h : x 7→ |x| at x = 2, x = −2 and at x = 0.
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CHAPTER 3. DERIVATIVES

Exercise 16Let f : x 7→ x3 − x− 6. Check that 2 is a root of f . Are there other roots?At what values of x is the derivative equal to zero? What is the value of the function at thesepoints? At what values of x de we have f ′(x) > 0 and at what values do we have f ′(x) < 0?Use all this information to make a rough sketch of the function.
Exercise 17Let f : x 7→ 2x3 − 4x2 + 2x. At what values of x is the function equal to zero? At whatvalues of x is the derivative equal to zero? What is the value of the function at these points? Atwhat values of x de we have f ′(x) > 0 and at what values do we have f ′(x) < 0?Use all this information to make a rough sketch of the function.
Exercise 18Consider the derivative at x (general case) of the function

f : x 7→ x2 + 3x.

Show that it is differentiable for all x and that f ′(x) = 2x+ 3.
Notice that in a derivative, the division is always between two ultrasmall numbers. Theycannot be replaced by 0 since 0

0 is not defined.If a function is differentiable for all x in an interval, then f is said to be differentiable onthe interval.
Definition 6
If f ′(x) exists for all x in I the derivative function is

f ′ : I → R
x 7→ f ′(x)

If f ′(a) = 0, then in an ultrasmall neighbourhood of a the function is stationary – on anultrasmall neighbourhood [a−∆x; a+∆x] its variation is of the form ε ·∆x for ultrasmall ε –its graph is indistinguishable from a horizontal line.
Exercise 19Differentiate f : x 7→ x2 and g : x 7→ x3 at general x.

Notation: Let ∆x be ultrasmall relative to f and x. We write
∆f(a) = f(a+∆x)− f(a) or f(a+∆x) = f(a) + ∆f(a).Hence, we have:

∆f(a)

∆x
≃ f ′(a).
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CHAPTER 3. DERIVATIVES

Notation: A "≃" symbol may be replaced by a "=" symbol by adding a value ultraclose tozero on one of the sides i.e., A ≃ B ⇒ A = B + ε where ε ≃ 0. Sometimes working withequality is safer.Hence
∆f(a)

∆x
= f ′(a) + ε with ε ≃ 0

a a+∆x

f(a)

f(a+∆x)

∆x

∆f(a)

Note: drawings involving ultrasmall or ultralarge values are not meant to be to scale nor be acorrect representation. Their purpose – as all drawings used in mathematics – is merely to helpthe mind.
Practice exercise 4 Answer page 31Using definition 5, give the derivative functions of the following functions:

(1) f : x 7→ 3x+ 2

(2) g : x 7→ 2x2 − x

(3) h : x 7→ 5x3 + 2x2 − x

(4) k : x 7→ 5x3 + 2x2 + 3x+ 2

In some cases, the slope to the right of a point is not the same as the slope to the left ofthat point. The derivative is the slope when it is the same on both sides.
Exercise 20Let f : x 7→ ax+ b.Show that the slope of f is a.
Theorem 6 (Derivative at a maximum or a minimum.)
Let f be a real function defined on an open interval ]a; b[ differentiable at c ∈]a; b[.
If f(c) is a local maximum (or a local minimum) then f ′(c) = 0.
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CHAPTER 3. DERIVATIVES

Exercise 21Prove theorem 6. (Hint, consider the variation ∆f(c).)
Assume f ′(a) exists and that ⟨a, f(a)⟩ is a local maximum. (the same proof holds for aminimum. Then f(a) ≥ f(a+∆x) ⇒ f(a+∆x)− f(a) ≤ 0.Let ∆x be positive, then f(a+∆x)−f(a)

∆x ≤ 0 ≃ f ′(a)Let ∆x be negative, then f(a+∆x)−f(a)
∆x ≥ 0 ≃ f ′(a)The only observable number which is ultraclose to positive and negative values is 0.

Variation
We now make the link between local variation and derivative.
Definition 7
Let f be a real function defined on an interval I .

(1) The function f is increasing on I if f(x) ≤ f(y), whenever x < y in I .

(2) The function f is decreasing on I if f(x) ≥ f(y), whenever x < y in I .If the inequalities are strict, then we say that the function is strictly increasing or strictlydecreasing.
Exercise 22Prove the following theorem:
Theorem 7 (Variation and Derivative)
Let f be a real function differentiable at a. Then

(1) If f ′(a) ≥ 0 (> 0) then f is (resp. strictly) increasing at a.

(2) If f ′(A) ≤ 0 (< 0) then f is (resp. strictly) decreasing at a.

(3) If f ′(x) = 0 then f is stationary at a.

The converse is obvious: if f is increasing at a, then f ′(a) > 0.
Exercise 23A factory wants to make cardboard boxes (with no top) out of sheets of 30cm× 16cm

x

x

The volume will be a function of x. The dimensions of the base are 30− 2x and 16− 2x (incentimetres). The height is x. What value(s) of x give(s) the maximum volume for the box?
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CHAPTER 3. DERIVATIVES

Exercise 24Differentiate
(1) f : x 7→ 1

x for x = 1 and x = 2.
(2) g : x 7→ 1

3x+2 for x = 0 and x = 1.
(3) h : x 7→ 1

x2 for x = 1 and x = −1.

Tangent line
Suppose f is differentiable at x0. We observe that through a microscope, the curve of a function
f at x0 is indistinguishable from a straight segment. This straight segment meets the functionat ⟨x0; f(x0)⟩ and there is a (unique) line which extends this segment with slope equal to thederivative. This line is the tangent line.
Definition 8
Let f be differentiable at x0. The tangent line Tx0 is a line through ⟨x0; f(x0)⟩ with slope
f ′(x0).

The tangent line satisfies T (x0) = f(x0) and T ′(x0) = f ′(x0).
Exercise 25Let f : x 7→ x2. Find the equation of the straight line tangent to f at x = 3.
Exercise 26Show that

Tx0 : x 7→ f ′(x0)(x− x0) + f(x0).

Exercise 27Give the equation of the line tangent to x 7→ x3 − 3 · x2 at x = 2. For which values of x isthis tangent horizontal?
Exercise 28

(1) Find the slope of the curve given by y = 5x3 − 25x2 at x = 3.5.
Equivalent statement: compute f ′(x)

∣∣∣∣
x=3.5(2) Find the equation of the line tangent to the curve at x = 1.
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Exercise 29

(1) For f : x 7→ x2+5 and the point A⟨0; 0⟩, what is the equation of the line passing throughA, and tangent to f?
(2) If g : x 7→ ax2 + b, what values must a and b take to make g(x) tangent to t : x 7→ 3x− 2at x = 5? What are the coordinates of the contact point?

On the interval [1, 3], the function is locally increasing – the derivative is positive, soif we zoom on it, locally it is increasing. Hence f(2 + ∆x) > f(2) for ∆x > 0. Thevariation of the area is between f(2) ·∆x and f(2 + ∆x) ·∆x, hence
f(2) ·∆x < ∆A(2) < f(2 + ∆x)∆x

Then
f(2) <

∆A(2)

∆x
< f(2 + ∆x)

and we conclude that f(2) ≃ ∆A(2)
∆x and the conclusion is the same for ∆x < 0 (with

> instead of <)Therefore A′(2) = f(2) and in general we will have A′(x) = f(x).Using results of previous exercises, it is possible to check that A(x) = x3 + x but also
x3 + x+ k satisfies the requirement.We know that A(1) = 0 (the area under f from 1 to 1...) hence A(1) = 13 + 1 + k =
0 ⇒ k = −2 and A(3) = 33 + 1− 2 = 26.

Area under the curve of x 7→ x2

Exercise 30To find the area under f : x 7→ x2 between x = 0 and x = 2, the idea is to consider the
variation of the area in order to find the area itself.Assume that the area under f , between 0 and x is given by a function A(x). Consider thevariation ∆A(x), for ultrasmall variation of x noted ∆x.
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∆A(x)

x

Even though the exact value of ∆A(x) may not be directly seen, it can be shown to bebetween two values, m and M calculated by rectangles.
m < ∆A(x) < M• Give a formula for m, using x and f .• Give a formula for M , using x and f .• Divide all terms by ∆x.• Show that all resulting quotients are ultraclose.• Conclude that the area is given by a function which is the derivative of a known function.

Antiderivatives

Definition 9 (Antiderivative)
If f ′ is the derivative function of f , then f is the antiderivative function of f ′.

Exercise 31The velocity of an object is given by the derivative of its position (variation of position dividedby variation of time).The acceleration is given by the derivative of the velocity (variation of velocity divided byvariation of time).On earth, the acceleration of a falling body is constant (when there is no air friction) andapproximately equal to 9.81m
s2

, written g.(1) Find the formula for the velocity with respect to time.(2) Given the formula for velocity, find the formula for the position of a falling body withrespect to time.
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Exercise 32Show that if F is an antiderivative of f , then for any constant C , F + C is also an an-tiderivative of f .
Exercise 33Considering previous exercise, reconsider your answers for exercise 31. Think in terms ofunits to determine what the constants could represent.
Exercise 34Find the antiderivatives for the following:

(1) x 7→ 3x

(2) x 7→ x2

(3) x 7→ 5

(4) t 7→ 3t+ 5

(5) u 7→ u2 + 3u+ 5

(6) v 7→ v3

Check your results by differentiating them.

THINGS TO LOOK OUT FOR
f ′(a) is NOT equal to ∆f(a)

∆x
.

The relation is one of ultracloseness.
f ′(a) ≃ ∆f(a)

∆x

28



CHAPTER 3. DERIVATIVES

Practice exercise 5 Answer page 31Calculate the derivative of the following:
(1) f : x 7→ 5x2 − 10x at x = 2

(2) g : x 7→ 5(x− 10)2 at x = 3

(3) h : x 7→ x4 + x3 + x2 + x+ 1 at x = 1

(4) k : x 7→ 5x2 + 10 at x = 2

Practice exercise 6 Answer page 31Find the derivative of each of the following functions and specify its domain, starting fromthe definition.
(1) a : x 7→ 1

(2) b : x 7→ |x|

(3) c : x 7→ x

(4) d : x 7→ x2

(5) e : x 7→ |x2|

(6) f : x 7→ x3

(7) g : x 7→ |x3|

(8) h : x 7→ 1

x

(9) i : x 7→ 1

x2

Practice exercise 7 Answer page 31Find the derivative of each of the following functions and specify its domain, using linearityand the results from the previous exercise.
(1) a : x 7→ 2x2 − 4x+ 5

(2) b : x 7→ x3 + 2x

7

(3) c : x 7→ 3x3 − 2

x

(4) d : x 7→ x2 − 2x+ 5

x

(5) e : x 7→ 5x3 − 7|x|+ 8
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Practice exercise 8 Answer page 32Find all the antiderivatives of each of the following functions, using linearity and the resultsfrom the exercise 1.
(1) a : x 7→ 10x

(2) b : x 7→ x2

(3) d : x 7→ x

|x|(4) e : x 7→ 3x− 4

(5) f : x 7→ x2 − 2x+ 4

(6) g : x 7→ 1

x2

(7) h : x 7→ 2x2 − 1

2x2

Practice exercise 9 Answer page 32Let
f : x 7→ 1

3
x3 +

7

2
x2 + 12x

Calculate its derivative, find where the derivative is positive, where it is negative and whereit is equal to zero.Calculate the intercepts of f and sketch the graph of f .
Practice exercise 10 Answer page 33Consider the functions differentiated above:

(1) a : x 7→ 2x2 − 4x+ 5

(2) b : x 7→ x3 + 2x

7For a, give the equation the line tangent to the curve at x = −2For b, give the equation the line tangent to the curve at x = 1
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Answers to practice exercises

Answers to practice exercice 4, page 23
(1) f ′(x) = 3

(2) g′(x) = 4x− 1

(3) h′(x) = 15x2 + 4x− 1

(4) k′(x) = 15x2 + 4x+ 3

Answers to practice exercice 5, page 29
(1) f ′(2) = 10

(2) g′(3) = −70

(3) h′(1) = 10

(4) k′(2) = 20

Answers to practice exercice 6, page 29
(1) a′(x) = 0 Domain=R

(2) b′(x) =


1 if x > 0undefined if x = 0

−1 if x < 0

Domain=R \ {0}

(3) c′(x) = 1 Domain=R

(4) d′(x) = 2x Domain=R

(5) e′(x) = 2x Domain=R

(6) f ′(x) = 3x2 Domain=R

(7) g′(x) =


3x2 if x > 0

0 if x = 0

−3x2 if x < 0

Domain=R

(8) h′(x) =
−1

x2
Domain=R

(9) i′(x) =
−2

x3
Domain=R

Answers to practice exercice 7, page 29
(1) a′(x) = 4x− 4 Domain=R

(2) b′(x) =
3x2 + 2

7
Domain=R

(3) c′(x) = 9x2 + 2
x2 Domain=R \ {0}
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(4) d′(x) = 1− 5

x2
Domain=R \ {0}

(5) e′(x) =


15x2 − 7 if x > 0undefined if x = 0

15x2 + 7 if x < 0

Domain=R \ {0}

Answers to practice exercice 8, page 30
(1) A(x) = 5x2 + C for any C ∈ R

(2) B(x) =
x3

3
+ C for any C ∈ R

(3) D(x) = C for any C ∈ R (function undefined at x = 0)
(4) E(x) =

3

2
x2 − 4x+ C for any C ∈ R

(5) F (x) =
x3

3
− x2 + 4x+ C for any C ∈ R

(6) G(x) = −1

x
+ C for any C ∈ R

(7) H(x) =
2

3
x3 +

1

2x
+ C for any C ∈ R

Answers to practice exercice 9, page 30
f(x) = x

(
1

3
x2 +

7

2
x+ 12

)
S = {0}
f ′(x) = x2 + 7x+ 12 = (x+ 3)(x+ 4)

S ′ = {−3,−4}
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x

y

-10 -5 0 5

-15

-10

-5

0

5
−3

−13.5

−4

−13.333

Answers to practice exercice 10, page 30
(1) ta : x 7→ −12x− 3

(2) tb : x 7→ 5

7
x− 2

7
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4Continuity
Informally: a function is continuous at x = a if it is where you would expect it to be by observingwhere it is in the neighbourhood of a.
Definition 10 (Continuity )
Let f be a real function defined around a. We say that f is continuous at a if (for any x)

x ≃ a ⇒ f(x) ≃ f(a).The continuity of f at a is a property of f and a. Hence the context is given by f and a.The definition of continuity can also be interpreted in the following ways:
Definition 11 (Continuity: equivalent definition)
Let f be a real function defined around a. We say that f is continuous at a if

f(a+∆x) ≃ f(a) not depending on ∆x.(As for the derivative, the context is f and a.)
Exercise 35Show that f : x 7→ x3 is continuous at a = 2.
Theorem 8 (Critical Point Theorem)
Let f be a continuous function on I and suppose that c is a point in I and f has either a
maximum or a minimum at c. Then one of the following three things must happen:

(1) c is an end point of I .

(2) f ′(c) is undefined.

(3) f ′(c) = 0The critical point theorem graphically:

c c c
The two first cases are direct observation. The third case id theorem 6.
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Exercise 36Show whether f : x 7→ x

x2 + 1
is continuous for all values of x. exo

(1) Show that f : x 7→ |x| is continuous at x = 0, at x = 1, at x = −1 and at x in general.
(2) Show that g : x 7→

{
x2 if x ≥ 0

x3 if x < 0
is continuous at x = 0 and at x in general.

(3) Show that g : x 7→

{
x2 if x ≥ −1

x3 if x < −1
is not continuous at x = −1 but is continuous for all

other values of x.
Exercise 37Prove the following theorem:
Theorem 9
If a real function f is differentiable at a then f is continuous at a.

(1) Give a direct proof.
We start using the power of the increment equation.
∆f(a) = f ′(a) ·∆x︸ ︷︷ ︸observable×ultrasmall ≃0

+ ε ·∆x︸ ︷︷ ︸
≃0

(2) Give a proof by contrapositive.
Assume f is not continuous at a, then there is an x ≃ a such that f(x) ̸≃ f(a).So |f(a)− f(x)| ≥ b, for some observable positive b. Then |f(a)−f(x)|

δx ≥ b
∆x . Thislast term is ultralarge (observable/ultrasmall) so there is no observable neighbour,so no derivative.

Exercise 38Use an induction proof to show that x 7→ xn is continuous for all n.
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Exercise 39Prove the following theorem:
Theorem 10
Let f and g be two real functions continuous at a. Then

(1) f ± g is continuous at a.

(2) f · g is continuous at a.

(3) f

g
is continuous at a if g(a) ̸= 0.

For x ≃ a, we have f(x) ≃ f(a) and g(x) ≃ g(a). The conclusions follow bytheorem 5.
It is also possible to introduce dependent variables u and v.
f(a) = b, g(a) = c, f(x) = u and g(x) = vBy continuity b ≃ u and c ≃ vBy theorem 5, b± c ≃ u± v b · c ≃ u · v and b

c ≃ u
v .

Exercise 40Prove the following theorem:
Theorem 11
Let f and g be two real functions. If f is continuous at a and g is continuous at f(a), then g ◦ f
is continuous at a.

g(x) ≃ g(a) hence f(g(x)) ≃ f(g(a)). And that is it.
So short that maybe some expanding may help (useful to prepare the way for the chainrule).Let g(a) = b and g(x) = u. By continuity of g at a, we have b ≃ u and by continuityof f at b, we have f(b) ≃ f(u).

Exercise 41Use an induction proof to show that x 7→ a0 +
n∑

k=1

akx
k is continuous for all n.

Definition 12 (Continuity on an Interval)
(1) Let f be a real function defined on the open interval ]a; b[. Then f is continuous on ]a; b[

if f is continuous at all x ∈]a; b[.

(2) Let f be a real function defined on the closed interval [a; b]. Then f is continuous on [a; b]
if f is continuous at all x ∈]a; b[ and if f continuous on the right at a and on the left at b.
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Informally: a function is continuous on an interval if its curve can be drawn without liftingthe pencil, or if the function is where you expect it to be if it is hidden by a vertical line.
Exercise 42Determine whether f : x 7→ x2 is continuous on its domain.

Clearly, if f and g are continuous on an interval I then the sum, difference, product andquotient (if g(x) ̸= 0) are continuous on I . Moreover, if g is continuous on an interval containing
f(I) then g ◦ f is continuous on I .
Exercise 43Show whether the following functions are continuous on the given intervals.(1) f1 : x 7→ 1

3x+
√
2 on R(2) f2 : x 7→ x2 − 3x− 1 on R

(3) f3 : x 7→ x+ 2

x− 1
on ]1; +∞[

Exercise 44Determine whether f : x 7→ 1
x is continuous on its domain.

Theorem 12 (Intermediate Value theorem)
Let f be a real function continuous on [a; b]. Let d be a real number between f(a) and f(b).
Then there exists c in [a; b] such that f(c) = d.

This theorem does not tell us how to find the root or the value c such that f(c) = d. It onlyasserts the existence of such a number. For specific functions where we can calculate the rootsexplicitly this theorem is not really necessary but, when proving theorems about continuousfunctions in general, it is the only way to know that there is a root.
Exercise 45Give an example of a function f discontinuous on [a; b] with f(a) < 0 and f(b) > 0 suchthat there is no c in the interval [a; b] such that f(c) = 0.
Exercise 46Proving theorem 12.Let f be continuous on an interval [a; b].Assume d = 0 and f(a) < 0 < f(b).The context is f , a, b and 0. Take an ultralarge positive integer N and partition [a; b] into Neven parts, each of ultrasmall length ∆x = b−a

N . We thus have x0 = a, x1 = x0+∆x, . . . , xN =
b. Call xj the first point of the partition such that f(xj) ≥ 0. Hence f(xj−1) < 0.

(1) Let c be the observable part of xj . Is it the observable part of xj−1?
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(2) Is f(c) observable?
(3) How close are f(xj) and f(xj−1)?(4) How close is f(c) from f(xj) and f(xj−1)?(5) What is the value of f(c)?

(For d ̸= 0 the theorem would hold for g(x) = f(x)+d; for f(a) > f(b), reverse all inequalitysymbols.)

Let N be an ultralarge integer, and ∆x = b−a
N ≃ 0 and xk = a+ k ·∆x.Let xj be the first element of the partition {a, x1, x2, . . . , xN = b} such that f(xj) < 0and f(xj+1) ≥ 0.Since a ≤ xj ≤ b, then xj has an observable neighbour c, so xj ≃ c and xj+1 ≃ c.By closure f(c) is observable with f(c) ≃ f(xj) < 0 and f(c) ≃ f(xj+1) ≥ 0, hence

f(c) = 0.
I usually give the example of x 7→ x2 − 2 as f : Q → Q to show that this theorem is
the link between continuity and the fundamental characterisation of what real numbers
are.

Definition 13
A function has maximum (respectively minimum) on an interval I if there is a c ∈ I such that
for any x ∈ I we have f(c) ≥ f(x) (respectively f(c) ≤ f(x)).
If a point is either a maximum or a minimum, it is an extremum.

Theorem 13 (Extreme value)
Let f be a continuous function on [a; b]. Then it has a maximum and a minimum on [a; b].

Exercise 47Without loss of generality, we consider the case of a maximum (for the minimum replace fby −f ). Context is f, a and b.We proceed similarly to exercise 46.Let f be continuous on an interval [a; b].Take an ultralarge positive integer N and partition [a; b] into N even parts, each of length
∆x = b−a

N . We thus have x0 = a, x1 = x0 +∆x, . . . , xN = b.Call xj the first point of the partition such that f(xj) ≥ f(xi) for any i between 0 and N .
(1) Call c the observable part of xj . Is f(c) observable?
(2) Let x be observable. Then there is an i such that xi ≤ x ≤ xi+1. Using continuity,conclude that f(x) ≤ f(xj).(3) By the closure principle, conclude that f(c) is the maximum.
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A bit more tricky since it uses Closure in the contrapositive: a statement and its
negation have same observability. If a statement is true for all observable values
of a set, then it is true for all values in that set. If it did not, there would be a
counterexample, but by closure, if there is a counterexample, there is an observable
one. So there is no counterexample.

Take an ultralarge positive integer N and partition [a; b] into N even intervals, eachof length ∆x = b−a
N . We thus have x0 = a, x1 = x0 +∆x, . . . , xN = b.Call xj the first point of the partition such that f(xj) ≥ f(xi) for any i between 0 and

N .Let c be the observable neighbour of xj . By closure f(c) is observable. Let x ∈ [a; b]be observable. Then f(x) ≤ f(c).Proof of this claim: since x ∈ [a; b], there is an i such that xi ≤ x ≤ xi+1. Assume
f(x) > f(c), then f(x) ≃ f(xi) ̸≃ f(xj). This implies f(xi) > f(xj) which contradictsthe definition of xj . Then ⟨c, f(c)⟩ is the maximum of for all observable x in the interval,hence by closure it is the maximum of all x in the interval.

Continuity and Differentiability

Theorem 14 (Rolle)
Let f be a real function continuous on [a; b] and differentiable on ]a; b[. If f(a) = f(b), then
there is a c ∈]a; b[ such that

f ′(c) = 0.

Exercise 48Prove Rolle’s theorem.

Theorem 15 (Mean Value)
Let f be a real function continuous on [a; b] and differentiable on ]a; b[. Then there is a c ∈]a; b[
such that

f(b)− f(a) = f ′(c) · (b− a).

Exercise 49Consider g which is obtained by subtracting the line ℓ(x) through (a, f(a)) and (b, f(b))from the function f i.e., g(x) = f(x)− ℓ(x).
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a b

Show that g satisfies Rolle’s theorem and conclude with the mean value theorem.
Exercise 50Let f be continuous and positive on [a; b]Assuming the area function under f is given by A. Show how A can be bounded above andbelow. Show that there is a value c ∈ [a; b] such that A = f(c) · (b− a).
Exercise 51Prove the following theorem:
Theorem 16
The antiderivative of a function – when it exists – is unique up to an additive constant i.e.,
for any constant C

f ′ = g′ ⇒ f = g + C

Exercise 52Consider the trigonometric circle. The chord BC is shorter than the arc BC .

x

y

∆cos(θ)

∆ sin(θ)

θ
dθ

C

B
s

10

Show that sine and cosine are continuous functions.
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By Pythagoras: (∆ sin(θ))2 + (∆cos(θ))2 = (BC)2Since the straight line is the shortest between two points, BC < θ ≃ 0. This impliesboth ∆sin(θ) ≃ 0 and ∆cos(θ) ≃ 0
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Optimisation Problems

Exercise 53A 1l milk pack is made of cardboard. Its sides can only be rectangles. The height is twiceone of the other two dimensions. The area of the pack must be minimal.What are the dimensions of the pack?
Exercise 54Imagine you want to protect a part of a rectangular garden against a long wall. You have100m of fence. (No fence is needed against the wall.)What is the biggest area that you can protect?
Exercise 55A cylindrical jar has a volume defined by its radius and its height. If it contains one litre(1dm3), what are the dimensions that will make it have the least area?
Exercise 56Find the length and width of the rectangle inscribed within the ellipse given by the formula
4x2 + y2 = 16 (sides parallel to the coordinate axes) such that its area is maximal.
Exercise 57Let P be the parabola given by x 7→ x2 and A be the point ⟨0; 5⟩.Find the point(s) on the parabola P such that its (their) distance to A is minimal.
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Bending

Definition 14 (Second Derivative)
Let f be a function differentiable at a. If f ′ is also differentiable at a, then we say that f is
differentiable twice at a and (f ′)′(a) = f ′′(a)a

apronounced: “eff double prime”

Definition 15
Let f be differentiable on an interval I . The curve of f is bending upwards on I if for every
x, u ∈ I , f(u) is above the line tangent to f at (x, f(x)), i.e.,

f(u) ≥ f ′(x)(u− x) + f(x).

The curve of f is bending downwards on I if (−f) is bending upwards.

f(x)

x u

f(u)

t(u)

For ultrasmall (u− x) this can be rephrased in the following manner:
Definition 16
A differentiable function f is bending upwards at a if

f(a+∆x) ≥ f(a) + f ′(a) ·∆x.

Theorem 17 (Bending and Second Derivative)
Let f be twice differentiable on an interval I . Then

(1) If f ′′(x) ≥ 0 whenever x ∈ I then f is bending upwards on I .

(2) If f ′′(x) ≤ 0 whenever x ∈ I then f is bending downwards on I .

Exercise 58Use the mean value theorem to prove theorem 17.
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This proof is not specific to ultracalculus. But here it is:

For (1) we have to prove that(
f(x)− f(a)

)
· (b− a) ≤

(
f(b)− f(a)

)
· (x− a).

We can write b−a = (b−x)+(x−a) and f(b)−f(a) = (f(b)−f(x))+(f(x)−f(a)).This inequality is thus equivalent to the following:(
f(x)− f(a)

)
· (b− x) ≤

(
f(b)− f(x)

)
· (x− a),

that is,
f(x)− f(a)

x− a
≤ f(b)− f(x)

b− x
.

By the Mean Value Theorem, there exist c, d such that a < c < x < d < b and
f(x)− f(a)

x− a
= f ′(c) and f(b)− f(x)

b− x
= f ′(d).

It follows from f ′′(x) ≥ 0 in I , that f ′ is increasing in I , and in particular, f ′(c) ≤ f ′(d).This proves (1); for the proof of (2) replace f by −f .
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5Differential Calculus
For the following rules, the proofs proceed by steps:

(1) Definition of the derivative.
(2) Definition of ∆.
(3) Definition of operations on functions.
(4) Expansion of f(a+ dx) as f(a) + ∆f(a).
(5) Division by dx.
(6) Algebra.
(7) Definition of the antiderivative for the inverse rule about integration.

Exercise 59Explain why if f is differentiable at a, then ∆f(a) ≃ 0.
The previous property can be rewritten using the y = f(x) notation, where y is a dependentvariable. Then if y′ exists, we have y′ ≃ ∆y

∆x and ∆y ≃ 0.
Product

Starting with linearity of the derivative leads to the common error (uv)′ = u′v′. So we
start with the less obvious ones to avoid this.

The notation f(x) = u and other notations simplify the writing: it is a shift fromfunction to dependent variable – which are similar concepts.
When two different functions are involved, it is common practice to write f(x) = u and

g(x) = v then ∆f(x) = ∆u and ∆g(x) = ∆v.Consider the product u · v and its variation (a product a · b can be interpreted as the area ofa rectangle with sides a and b).When x varies to x+∆x, u varies to u+∆u and v varies to v +∆v.
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v

u ∆u

∆v

v ·∆u

u ·∆v ∆v ·∆u

Then u · v varies to v · u+ v ·∆u+∆v · u+∆v ·∆u hence
∆(u · v) = v ·∆u+∆v · u+∆v ·∆u

Exercise 60Divide the expression above by ∆x and justify that ∆u·∆v
∆x ≃ 0 to prove

∆u ·∆v

∆x
=

∆u

∆x
·∆v ≃ u′ ·∆v

Since ∆v ≃ 0 we have
u′ ·∆v ≃ 0

Theorem 18
Let u and v be two differentiable functions, then

(u · v)′ = u′ · v + u · v′

∆(u · v)
∆x

=
∆u

∆x
· v + u · ∆v

∆x
+

∆u

∆x
·∆v ≃ u′ · v + u · v′

This theorem can also be written:
Let f and g be two real functions differentiable at a. Then the function f · g is differentiableat a and

(f · g)′(a) = f ′(a) · g(a) + f(a) · g′(a).

Exercise 61Using the derivatives of f : x 7→ x2 and g : x 7→ x3, calculate the derivative of h : x 7→ x5

(= x2 · x3).
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Exercise 62Prove :
Theorem 19

(xn)′ = n · xn−1

by induction.

Induction

If
(1) The property holds for n = 0 (or n = 1),
(2) Assuming the property holds for n greater than 0 (or 1), we can prove that it also holdsfor n+ 1,

then the property holds for all n.A proof that this method of proof is valid can be given by contradiction. Assume (1) and(2) have been checked but that there is a value m such that the property does not hold for m.Then m > 1 since that has been proven to be true. Let n be the smallest number such that theproperty does not hold. (This number is not zero because of (1).) Then the property holds for
n− 1. But by (2), this proves that the property holds for n: a contradiction. So there can be nonumber for which the property does not hold.
Exercise 63Similar to exercise 30: Calculate the area between y = 5x4− 3x3+2x2− 10 and the x-axisfrom x = −1 to x = 1.
Exercise 64Sketch the curve of f : x 7→ x2 and g : x 7→ x3. Calculate the points where f(x) = g(x)Calculate the closed geometric area of the surface between the two curves.

Circular functions

The idea to present derivatives of circular functions this early is (1) because we can,(2) they will extensively be used in connection with the chain rule and (3) higher levelgoes definitely beyond polynomials.
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Exercise 65Observe the following drawing where the angle β has been drawn on top of the angle α.
(1) Explain why the angle right at the top is equal to α

(2) Express the lengths of a, b and c in terms of sin(α), cos(α), sin(β) and cos(β).

x

y

α

β

α

10
a

b

c

Exercise 66Finish the proof of
Theorem 20

sin(α+ β) = sin(α) cos(β) + cos(α) sin(β)

cos(α+ β) = cos(α) cos(β)− sin(α) sin(β)

Exercise 67Use the definition of the derivative and theorem 20 to expand ∆sin(a)

Exercise 68To continue, you will need to prove theorem 21:
Theorem 21

sin(∆θ)

∆θ
≃ 1.

Suppose first that θ > 0 is in the first quadrant.
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cos(θ)

sin(θ)
θ

tan(θ)

Comparing the area of the sector with that of the inside and outside triangles, we obtaininside triangle ≤ sector ≤ outside triangle.Rewrite this chain of inequalities replacing the areas by the corresponding formulae.By using −θ if θ is negative, we see that the same inequalities are true for negative θ (inthe fourth quadrant).Let θ be ultrasmall. By continuity, cos(θ) ≃ 1. Then conclude the proof of the theorem.
Exercise 69Show that

1− cos(∆θ)

∆θ
≃ 0.Hint: multiply above and below by (1 + cos(∆θ))

Exercise 70Using theorem 21 and previous exercise, find the derivative of sin(x) and of cos(x).
These results are summarised here:

Theorem 22
(1) sin′(θ) = cos(θ)

(2) cos′(θ) = − sin(θ)

Exercise 71Let c be a constant, considered as a constant function. What is ∆c? and use this to concludethat
Theorem 23
Let c be a constant. Then

c′ = 0

This theorem can also be written:
Let c ∈ R and f : x 7→ c, for x ∈ R

f ′(x) = 0.

Consider the product c · u for constant c and differentiable function u, then when x varies to
x+∆x the product c · u varies toc · u to c · u+ c ·∆u, hence

∆(c · u) = c ·∆u
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c

u ∆u

c ·∆u

Exercise 72Divide the expression above by ∆x to prove
Theorem 24
Let c be a constant and u a differentiable function. Then

(c · u)′ = c · u′

c ·∆u

∆x
= c · ∆u

∆x
≃ c · u′

This theorem can also be written:
Let c ∈ R and f be a real function differentiable at a. Then the function c ·f is differentiableat a and

(c · f)′(a) = c · f ′(a).

A function such as f : x 7→ (x3+2x)4 can be decomposed as a composition of f1 : x 7→ x3+2xand f2 : x 7→ x4. Then f = f2 ◦ f1.
Sum and Difference

Consider the sum. When x varies to x+∆x, u varies to u+∆u and v varies to v +∆v.
u ∆u v ∆v

Then
∆(u+ v) = ∆u+∆v
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Exercise 73Divide the expression above to prove:
Theorem 25
Let u and v be differentiable functions. Then

(u+ v)′ = u′ + v′

∆u+∆v

∆x
≃ u′ + v′

This theorem can also be written:
Let f and g be real functions differentiable at a. Then the function f + g is differentiable at

a and
(f + g)′(a) = f ′(a) + g′(a).

Exercise 74Find the derivatives of h : x 7→ x3 + x2 and k : x 7→ 5x3 − 7x2.

Composition

Theorem 26 (Chain Rulle)
Let u by a differentiable function of v and v a differentiable function of x. Then

(u ◦ v)′ = u′ · v′

Exercise 75Prove the chain rule.
If u′ exists, we have (as usual)

u′ ≃ ∆u

∆xwhere u depends on vIf ∆v ̸= 0, then
u′ ≃ ∆u

∆x
=

∆u

∆v
· ∆v

∆x
≃ u′ · v′
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Exercise 76Prove that this formula holds also if ∆v = 0.
If ∆v = 0 then v′ = 0, so f ′(v)·v′ = 0. But since v has no variation, u has no variation,so u′ = 0 and the result also holds.This theorem can also be written:

Let f and g be real functions such that g is differentiable at a and f is differentiable at g(a).The the function f ◦ g is differentiable at a and
(f ◦ g)′(a) = f ′(g(a)) · g′(a).

Exercise 77Give the derivatives of the following functions:
(1) f : x 7→ (x3 + 2x)4

(2) g : x 7→ (5x3 + 3x2)13

Exercise 78Use (
√
x)2 = x and theorem 26 to find the derivative of y =

√
x (for x > 0) – assuming itexists.

Exercise 79Give the derivatives of the following functions:
(1) f : x 7→ (

√
x+ 1)4

(2) g : x 7→
√
5x3 + 3x2

(3) h : x 7→
√
x2

Exercise 80Find the derivatives of the following:
(1) y =

√
3x3 + 2x+ 1

(2) y = (x2 + 3)5

(3) y = (ax+ b)n

(4) y =
√
x3 + 1
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Exercise 81Use the definition of the derivative to find f ′(x) for f : x 7→ 1
x

Exercise 82Use the previous exercise and the chain rule to find the derivative of 1
f(x) assuming f(x) ̸= 0and f ′(x) exists.

Write f(x) = u. Since (
1
x

)′
= − 1

x2 (by previous exercise) we have (
1
u

)′
= − u′

u2

Quotient

Exercise 83Use all previous results to prove:
Theorem 27
Let u and v be differentiable functions with v ̸= 0, then(u

v

)′
=

u′ · v − u · v′

v2

u
v = u · 1

v hence (u
v

)′
= u′ · 1

v
− u · v

′

v2
=

u′ · v − u · v′

v2

This proof is nice because it uses the chain rule and therefore stresses its importance.

Or more classical:
∆
(u
v

)
=

u+∆u

v +∆v
− u

v
=

∆u · v − u ·∆v

v2 + v ·∆v

∆
(
u
v

)
∆x

=

∆u

∆x
· v − u · ∆v

∆x
v2 + v ·∆v

≃ u′ · v − u · v′

v2Also written:
Let f and g be two real functions differentiable at a and g(a) ̸= 0. Then the function f

g
isdifferentiable at a and (

f

g

)′
(a) =

f ′(a) · g(a)− f(a) · g′(a)
g2(a)

.

Exercise 84Calculate tan′(x) using tan(x) =
sin(x)

cos(x)
.
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Exercise 85Find the slope of f : x 7→ x2 − 2x+ 1

x3 + x2
at x = 1.

Exercise 86Show that for m ∈ Z
(xm)′ = m · xm−1.

Exercise 87Given that the gravitational force between two masses is F = G
m1 ·m2

d2
(where d is thedistance between the two masses and G the universal constant of gravitation), what is the forcebetween objects A and B in the following situation? (For simplicity, the linear mass will beconsidered to have no width and the other will be considered reduced to a point.)

A 6kg
3m6m

B 18kg

Practice exercise 11 Answer page 90Differentiate the following for general x:
(1) f : x 7→ 5x4 + x3 − 2x2 + 25(2) g : x 7→ 5

√
3 x2 − 100

(3) h : x 7→ x2 + 2x− 1

x3 − 5

(4) j : x 7→ 5x4 +
1

3x2 − 2x+ π

(5) k : x 7→ (5x+ 2) · 1

5x+ 2

(6) l : x 7→ 1

x
+

1

x2
+

1

x3
+

1

x4

(7) m : x 7→ 1 + x

1 + 1+x
x2

Practice exercise 12 Answer page 90Sketch the curve of y = −(x− 3)(x+ 1)(x− 1).
Practice exercise 13 Answer page 90Let y =

10x

x2 + 1
. Sketch the curve and give the equation of the line tangent to the curve at

x = 3.
Practice exercise 14 Answer page 91Consider each of the following as a function f , find the corresponding derivative function f ′.
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(1) x3 + x2 + 2x− 4(2) −x3 + 2x2 − 2x+ 1(3) 1
3x

3 − 5
2x

2 + 6x(4) 1
3(x− 2)3

(5) x2

x+ 2

(6) x− 1 +
9

x+ 1

(7) 4x2 + 4x+ 5

4x+ 2

(8) −x2 − 2x− 1

x+ 3

(9) |x− 2|

(10) x2

|x|+ 2

(11) x+ 2− 1

x+ 1

(12) |x3 − 6x2 + 11x− 6|

Exercise 88Find the derivative of the following functions. Since they are piecewise defined, the answerwill be in 3 parts – one special point is the meeting point for both rules.
(1)

f : x 7→

{
x2 if x ≥ 1

2x− 1 if x < 1

(2)
g : x 7→

{
x2 if x > 2

x+ 2 if x ≤ 2

(3)
h : x 7→

{
x2 if x ≥ 3

2x if x < 3

Practice exercise 15 Answer page 91Find the derivatives of the following:
(1) f1 : x 7→

√
3x3 + 2x+ 1

(2) f2 : x 7→ (x2 + 3)5

(3) f3 : x 7→ (ax+ b)n

(4) f4 : x 7→
√
x3 + 1

(5) f5 : x 7→ sin(x2 + 3x)

(6) f6 : θ 7→ cos2(3θ)

(7) f7 : u 7→ sin(sin(u))

(8) f8 : x 7→ tan2(tan2(x2))

(9) f9 : v 7→ sin(v)

tan(v)

(10) f10 : x 7→ sin2(x) + cos2(x)
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The differential

It is traditional to ue dx for ultrasmall ∆x.
Definition 17
Let f be a real function differentiable on an interval around a. Let ∆x be ultrasmall. The
differential of f at a, written df(a), is

df(a) = f ′(a) · dx.

△! While we write dx = ∆x, we cannot write dy = ∆y. We have ∆y = y′ + ε · dx.Thus
df(a)

dx
= f ′(a)

or still (if we use y = f(a))
dy

dx
= y′. If f is differentiable the following holds:

∆f(a)

∆x
≃ df(a)

dxWhereas ∆f(a) is the variation of the function, the differential df(a) is the variation alongthe tangent line.

f(a)

a
a+ dx

f(a+ dx)
f(a) + f ′(a) · dx

df(a)∆f(a)

Let f be a function. Recall that the inverse function of f , if it exists, is written f−1 and issuch that f−1(f(x)) = x amd if we write f(x) = y then we also have f(f−1(y)) = y.
△! f−1(x) is not 1

f(x)
.

A function has an inverse if the image of its curve by a symmetry through the y = x axis isthe curve of a function.
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f

y

x

∆x

∆y

f−1

y

∆y

∆x

x

Theorem 28 (Derivative of the Inverse)
If f : I → J is a function, differentiable on I and has an inverse f−1, and f ′(a) ̸= 0 then this
inverse is differentiable at b = f(a) ∈ J and

df−1(b)

dy
=

1

f ′(a)
.

This can also be written:
dx

dy
=

1

y′You may also use the following drawing to observe that the slope of the tangent of the inverseis the reciprocal of the slope of the original tangent.
Consider y and x be two variables with y = f(x) and x = f−1(y)The the derivative of the inverse is

df−1(y)

dy
=

dx

dy
=

1
dy
dx

=
1

y′
=

1

f ′(x)

f

y

x

dx

dy

f−1

x

y

dx

dy
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Exercise 89Find the derivative of y = x
1
n .

Exercise 90Find the derivative of y = x
m
n .

This shows that the rule in exercise 62 holds also for rational n.
Exercise 91Use | x |=

√
x2 to find an expression for the derivative of | x |.

Exercise 92
Difficult exercise!Let h be ultrasmall relative to 1.

H : x 7→


0 if x ≤ −h
1
2h (x+ h) if −h < x < h

1 if x ≥ h

(1) What is the context of the function?
(2) Calculate H ′(x).
(3) Sketch H , first with horizontal scale [−2; 2] and vertical scale [0; 1] then, for same verticalscale, take a horizontal scale [−2 · h; 2 · h].

Exercise 93For the inverse functions, it is convenient to use the differential.Prove the following theorem:Hint: Suppose that arcsin(x) = y i.e., sin(y) = x. Then arcsin′(x) = dy
dx = dy

d sin(x) .
Theorem 29

(1) arcsin′(x) =
1√

1− x2

(2) arccos′(x) = − 1√
1− x2

(3) arctan′(x) =
1

1 + x2
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Exercise 94Let ε be ultrasmall relative to 1. Consider the function
H : x 7→ 1

2
+

1

π
· arctan

(x
ε

)
.

Calculate the value of H at nonzero observable values, at zero.Calculate H ′(x) and sketch the curves of H and H ′.Calculate the value of H ′ at nonzero observable values, at zero.
this function is a nontandard continuous function which approximates a discontinuous
function. the Heaviside function.
H(0) = 1

2 + 1
π arctan(0) = 1

2For observable a > 0, H(a) = 1
2 +

1
π arctan(a/ε). Since a/ε is ultralarge and positive,we have arctan(a/ε) ≃ π

2 hence H(a) ≃ 1.For observable a < 0, H(a) = 1
2+

1
π arctan(a/ε). Since a/ε is ultralarge and negative,we have arctan(a/ε) ≃ −π

2 hence H(a) ≃ 0.
H ′(x) =

1

π
· 1

1 + (xε )
2
· 1
ε
=

1

π
· ε

ε2 + x2At observable a ̸= 0 we have H ′(a) = ε
ε2+x2 ≃ 0At a = 0, we have H ′(0) = 1

πε which is ultralarge.At standard context it looks like something which is not a function.

But if we zoom horizontally: we see a continuous function which is ultrasteep at zero.

x

y

-ε ε

1

Exercise 95(1) Show that x 7→ cos
(
1
x

) cannot be extended continuously at x = 0.(2) Show that
x 7→

{
x2 · sin

(
1
x

) if x ̸= 0

0 if x = 0is differentiable for all x ∈ R but that its derivative x 7→ g′(x) is not continuous at 0.

61



CHAPTER 5. DIFFERENTIAL CALCULUS

Exercise 96Compute the derivatives of the following:
(1) f : x 7→ sin2(3x+ π)

(2) g : x 7→ x · sin(x2 + 1)

(3) h : x 7→ sin2
(

x

x2 + 1

)
+ cos2

(
x

x2 + 1

)
(4) j : x 7→ 1 + tan2(x)

Exercise 97

(1) Show that f : x 7→ sin6(x) + cos6(x) + 3 sin2(x) cos2(x) is a constant function.(Hint: use the derivative. . . )
(2) At what values does f : x 7→ sin(x) + cos(x) have stationary points?
(3) What is the equation of the straight line tangent to y = sin2(x) at x = π

4 ?
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6Asymptotes
Exercise 98Consider the function f : x 7→ 1

x .

x

y

(1) What is the domain of this function? Specify the context.
(2) What happens to the curve close to the vertical axis i.e., for values of x close to 0? Considerultrasmall values of x.
(3) What happens to the curve close to the horizontal axis? i.e., for very large values of x?Consider ultralarge values of x (positive or negative).
(4) Draw this function for a horizontal range of [−100; 100] and a vertical range of [−100; 100].
(5) Does f have a limit at 0?

Informally: For a given function f , a straight line is an asymptote of the function f if it isultraclose to the function when either
• x tends to ±∞ (horizontal or oblique asymptote).
• y (or f(x)) tends to ±∞ (vertical asymptote).

63



CHAPTER 6. ASYMPTOTES

Definition 18
A real function f has a vertical asymptote at x = a if f(x) is positive or negative ultralarge
for x ≃ a, x being less than a or x being greater than a.
If it is the case for x greater than a, we write

x ≃ a+ ⇒ f(x) is ultralarge

or
lim

x→a+
f(x) = ±∞

If it is the case for x less than a, we write

x ≃ a− ⇒ f(x) is ultralarge

or
lim

x→a−
f(x) = ±∞

Example: The function f : x 7→ 1/x has a vertical asymptote at 0. The only parameter of thefunction is 1, always observable. If dx is a positive ultrasmall number then f(dx) is positiveultralarge. Hence
1

dx
is ultralarge

We also extend properties of limits to cases where x is positive ultralarge or negative ul-tralarge, written x → +∞ or x → −∞

Definition 19
A real function f defined on an interval of the form [b,+∞[ or ]−∞, b] has a horizontal asymptote
at +∞ (resp. −∞) if there is an observable number L such that

x → ∞ ⇒ f(x) ≃ L.

(the same holds for −∞)

A context is f and b, but it is always possible to consider an observable b relative to f hencea context is given by f , and x is ultralarge relative to that context. When this situation occurs,we say that L is the limit of f at plus infinity (resp. minus infinity), or that the limit of f is Lwhen x tends to infinity.
We write that f has a horizontal asymptote y = L at plus infinity if

lim
x→+∞

f(x) = L.

(Similarly for negative infinity.)
Example: Consider the limit

lim
x→+∞

x2 − 3x+ 1

x2 + 1
.

This means: consider the fraction for an ultralarge value of x.
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The function f : x 7→ x2 − 3x+ 1

x2 + 1
is defined on R. 1, 2 and 3 are always observable. Let xbe ultralarge. Then

f(x) =
2x2 − 3x+ 1

x2 + 1
=

x2(2− 3
x + 1

x2 )

x2(1 + 1
x2 )

=
2−

≃0︷︸︸︷
3

x
+

≃0︷︸︸︷
1

x2

1 +
1

x2︸︷︷︸
≃0

≃ 2

1
= 2,

hence f has a horizontal asymptote y = 2 at ±∞.
We now define the oblique asymptote

Definition 20
A real function f has an oblique asymptote at +∞ (resp. −∞) if there exist observable numbers
a, b (context is f ) such that

x → +∞ ⇒ [f(x)− (ax+ b)] ≃ 0 (resp. x → −∞ ⇒ [f(x)− (ax+ b)] ≃ 0).

The line y = ax+ b is the oblique asymptote of f (at ±∞).

The existence of an oblique asymptote is a property of f hence the context is f .
This is equivalent to saying that f(x) ≃ ax+ b whenever x is ultralarge.

Example: Consider
f : x 7→ x3 + 2x2 + x− 1

x2 + 1defined on R. Using long division we have
f(x) = x+ 2− 3

x2 + 1
.

Let x be ultralarge. We have
f(x)− (x+ 2) =

−3

x2 + 1
≃ 0,

because x2 + 1 is ultralarge. Hence f has an oblique asymptote at y = x + 2 (at ±∞), i.e.,
a = 1 and b = 2.
Exercise 99Find the asymptotes (if any) of

(1) f : x 7→ x

2x2 + 1

(2) g : x 7→ 2x2 + 1

x

(3) h : x 7→ x3 + 2

2x2 − 1

(4) i : x 7→ x2 + 2x+ 1

x+ 1

(5) j : x 7→ 3x3 + 2x2 − x+ 12

x2 + 8
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For functions which are not rational functions, where the polynomial long division does notapply, we have the following:
Theorem 30
Let f be a real function and let a and b be observable (context is f ). Then f has an oblique
asymptote at y = ax+ b at +∞ (resp. −∞) if and only if

lim
x→+∞

f(x)

x
= a and lim

x→+∞
[f(x)− ax] = b.

(resp. lim
x→−∞

f(x)

x
= a and lim

x→−∞
[f(x)− ax] = b.)

Remark: If a = 0 the line y = ax+ b becomes y = b i.e., a horizontal asymptote.
Exercise 100Use the definition of limit to rewrite the previous theorem without any reference to limits.
Exercise 101Prove the previous theorem.

Since the asymptote is a property of the function, the context is given by f but not by
x.If f has an oblique asymptote y = ax+ b then for ultralarge x, we have f(x) ≃ ax+ b.Divide by x:

f(x)

x
≃ a+

b

x︸︷︷︸
≃0

≃ a

and f(x)− ax ≃ b.
Conversely, assume that for ultralarge x, f(x)

x ≃ a and f(x) − ax ≃ b, then it isimmediate that for ultralarge x, f(x) ≃ ax+ b.
Example: Consider f : x 7→

√
x2 + 1 defined on R. Let x be positive ultralarge. Then

f(x)

x
=

√
x2 + 1

x
=

√
x2(1 + 1/x2)

x
=

|x|

≃1︷ ︸︸ ︷√
1 + 1/x2

x
≃

{
1 it x > 0

−1 if x < 0
.

Moreover:
f(x)− x =

√
x2 + 1− x =

(
√
x2 + 1− x) · (

√
x2 + 1 + x)√

x2 + 1 + x
=

1√
x2 + 1 + x

≃ 0.

Hence f has an oblique asymptote at y = x at +∞.At −∞ the function has an oblique asymptote at y = −x.

66



CHAPTER 6. ASYMPTOTES

Exercise 102Find the asymptotes at infinity (if any) of
(1) f : x 7→ sin(x)

x

(2) g : x 7→ x2 + sin(x)

x

(3) h : x 7→ x2 + sin(x)√
x

(4) i : x 7→ x
3
2

Exercise 103Consider a rational function
f(x) =

p(x)

q(x)where p and q are polynomials. Reminder: the order (or degree) of a polynomial function is thevalue of the highest exponent of the variable.
(1) In which cases will there be a vertical asymptote?
(2) In which cases will be there be a horizontal asymptote?
(3) In which cases will there be a horizontal asymptote at y = 0?
(4) In which cases will there be an oblique asymptote?

Practice exercise 16 Answer page 70Find all asymptotes of the following functions.
(1) f1 : x 7→ x2 − x

x− 1

(2) f2 : x 7→ 4x3 + 2x2 − 5

3x3 − 4x2(3) f3 : x 7→
√

x2 + x

(4) f4 : x 7→
√
x5 + x√
3x5 − x

(5) f5 : x 7→ x2 + 2x

sin(x)

(6) f6 : x 7→ sin(x)

x2 − x

(7) f7 : x 7→ 10x

10x + 1

67



CHAPTER 6. ASYMPTOTES

68



7Curve Sketching
Curve sketching needs the following steps:

• Find the domain.
• Find the roots and the intercept (if any).
• Find the asymptotes (if any).
• Find the derivative (if any).
• Find the roots of the derivative (if any).
• Find the second derivative (if any).
• Find the roots of the second derivative (if any).
• Determine the maximums and minimums and bending direction.
• Put all these values in a table.
• Draw arrows which indicate the general direction of the function:
• Use this information to choose a convenient scale.
• Sketch the function.
Reminder: for sketching purposes, the following approximations are good enough: √2 ≈ 1.4,√

3 ≈ 1.7, √5 ≈ 2.2

(1) f1 : x 7→ x3 + 5x2 − 8x− 12 (Check that −1 is a root to find the other roots.)
(2) f2 : x 7→ (x− 1) · (x+ 1) · x2

Practice exercise 17 Answer page 70Sketch the following:
(1) f1 : x 7→ x2

x+ 2

(2) f2 : x 7→ x− 1 +
9

x+ 1

(3) f3 : x 7→ −x2 − 2x− 1

x+ 3

(4) f4 : x 7→ x+ 3 +
1

2x+ 1
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(5) f5 : x 7→ x2 − 4x+ 6

(x− 2)2

(6) f6 : x 7→ 2x2 − 3

x2 − 1

(7) f7 : x 7→ x2 + 3x− 4

x2 − x− 2

(8) f8 : x 7→ x3 + 2

2x

(9) f9 : x 7→ x3 − 1

x2

(10) f10 : x 7→ 2x− 1√
x2 + 2

(11) f11 : x 7→
√
x2 + 1

x+ 1

(12) f12 : x 7→
√
x2 − 4x+ 3

x+ 1

Answers to practice exercises

Answers to practice exercice 16, page 67Vertical asymptote of the form x = c, horizontal asymptote of the form y = b, obliqueasymptote of the form y = ax+ b.
(1) y = x(2) y = 1, x = 0, x = 4/3

(3) {
y = x if x > 0

y = −x if x < 0

(4) y =
√
1/3, x = 4

√
1/3

(5) x = k · π k ∈ Z

(6) y = 0, x = 2

(7) {
y = 0 if x < 0

y = 1 if x > 0

Answers to practice exercice 17, page 69
(f1)

x

y

(f2)
x

y

(f3)
x

y
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(f4)
x

y

(f5)
x

y

(f6)
x

y

(f7)
x

y

(f8)
x

y

(f9)
x

y

(f10)
x

y

(f11)
x

y

(f12)
x

y
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8Integrals
Area under a curve
Consider a nonnegative function f continuous on a closed interval [a; b]. Note A(x) the areabetween the curve of f and the horizontal x-axis.The variation between x and x+ dx is ∆A(x).

a b

x+ dx

x

∆A(x)A(x)

f

Exercise 104Using the drawing above, consider f : x 7→ 3x2 + x between 2 and 2 + dx.
(1) Write the formula for the variation of the area ∆A(2) or at least for upper and lowerbounds to ∆A(2).(2) Determine the equation of A.

Theorem 31
Let f be a non-negative function continuous on [a; b]. Then the function

A : x 7→ A(x),

where A(x) is the area under the curve of f between a and x, has the following properties

(1) A′(x) = f(x), whenever x ∈ [a; b].

(2) A(a) = 0.
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Exercise 105Prove theorem 31.Reread exercises 30 and 104 and generalise the proof. At one point you will need theextreme value theorem (theorem 13).
For dx > 0. On [x, x + dx] the function reaches a max and a min. Hence the slice
∆A(x) is bounded below by the rectangle f(xm) · dx and above by the rectangle
f(xM ) · dx, hence

f(xm) · dx ≤ ∆A(x) ≤ f(xM ) · dxthen, since xm and xM are in [x, x+ dx], dividing by dx we get:
f(x) ≃ f(xm) ≤ ∆A(x)

dx
≤ f(xM ) ≃ f(x) ⇒ ∆A(x)

dx
≃ f(x)

By taking dx < 0 we notice that the area decreases and the the inequalites arereversed, hence, not depending on dx we have
∆A(x)

dx
≃ f(x) ⇒ A′(x) = f(x)

A(a) = 0 be the defintion that it is the area between a and a.
Exercise 106Calculate the area under f : x 7→ 5x3 − 2x2 + x− 2 between x = 1 and x = 4.Use A′ = f and A(1) = 0.
Exercise 107Consider the area under f between a and b. Show that if A′ = f and A(a) = 0, then
A(x) + C leads to C = −A(a).Hence the area is calculated by A(b)−A(a).

Notation

A(b)−A(a) is written A(x)
∣∣∣b
a

A
∫

um of
∫

lices

Exercise 108Total variation of a function:Let g : x 7→ x2, a = 0 and b = 5.(1) Cut the interval [a; b] into an ultralarge number N of pieces. Put all these pieces togetheragain – add all their lengths. What is the result?Write this using the symbol for a sum i.e., sum for k = 0 to N − 1.
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(2) For each dx = b−a
N there is a corresponding ∆y. Add all the ∆y between f(a) and f(b).Find the result.

(3) Use the microscope equation to express ∆y in terms of y or y′. Add all these terms. Findthe result.
The (vertical) variation of f between a and b is written f(x)

∣∣∣b
a

Let N be an ultralarge natural number and let dx = 5−0
N = 5

N . Set xk = k · dx. Eachpice goes from xk to xk+1 for some k. The length is dx.
N−1∑
k=0

dx = N · dx = N · 5

N
= 5

We have the telescoping sum:
f(5)− f(0) =

N−1∑
k=0

f(xk+1)− f(xk) =
N−1∑
k=0

∆f(xk) (*)
=

N−1∑
k=0

(f ′(xk) · dx+ εk · dx)

=

N−1∑
k=0

f ′(xk) · dx+

N−1∑
k=0

εk · dx

For the second sum, let ε = max{εk} then
N−1∑
k=0

εk · dx ≤
N−1∑
k=0

ε · dx = ε ·
N−1∑
k=0

dx = 5 · dx ≃ 0

Hence we get the relation:
x2

∣∣∣∣5
0

≃
N−1∑
k=0

f ′(xk) · dx =
N−1∑
k=0

2 · xk · dx

For the area under x2 between x = 0 and x = 5, we look at a sum of slices of area. Thiswill give the total variation of the area.
A =

N−1∑
k=0

∆A(xk)

This equation is the same as (*) above. Assuming A′ = f as shown in theorem 31, we have
A(x)

∣∣∣∣a
b

≃
N−1∑
k=0

f(xk) · dx
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△! Questions: How can we be sure that the function A exists and how do we define thearea under a function?We will now in fact reverse the process: define these sums and then define the area usingthese.
Fundamental Theorem of Calculus

The whole path to prove that a continuous function is integrable is tough. I do it in
class and only after do I specify which (if any) parts of the proof will be tested. The
reason to do these though, is that we (they) can assert that every theorem used is
proved.

Definition 21
Let f be a real function defined on [a; b]. Let n be a positive integer. Let dx =

b− a

n
and

xi = a+ i · dx, for i = 0, . . . , n. We say that f is integrable on [a; b] if there is an observable I

such that for any ultralarge integer n with dx =
b− a

n
and xi = a+ i · dx, for i = 0, . . . , n, we

have
n−1∑
i=0

f(xi) · dx ≃ I.

If such an I exists, it is called the integral of f between a and b; written∫ b

a
f(x) · dx.

Note that this sum is defined whether f is positive or not.
preliminary results

Exercise 109Prove the following preliminary results
Lemma 1
Let dx = b−a

N for ultralarge N , and all εi ≃ 0. Then
N−1∑
i=0

εi · dx ≃ 0

Let ε = max{εi | 0 ≤ i ≤ N − 1}

N−1∑
i=0

εi · dx ≤
N−1∑
i=0

ε · dx = ε ·
N−1∑
i=0

dx = N · dx = N · b− a

N
= ε︸︷︷︸

≃0

· (b− a)︸ ︷︷ ︸observable
≃ 0
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Lemma 2
Let f be an function continuous on [a; b]. Let 1

N ≃ 0, dx = b−a
N and xk = a+ k · dx, then there

exists a point c ∈ [a; b] such that

f(c) · (b− a) =
N−1∑
k=0

f(xk) · dx

For f continuous on [a, b], f has a maximum f(xM ) and a minimum f(xm).
N−1∑
k=0

f(xm) · dx ≤
N−1∑
k=0

f(xk) · dx ≤
N−1∑
k=0

f(xM ) · dx

hence
f(xm) ·

N−1∑
k=0

dx ≤
N−1∑
k=0

f(xk) · dx ≤ f(xM ) ·
N−1∑
k=0

dx

then
f(xm) · (b− a) ≤

N−1∑
k=0

f(xk) · dx ≤ f(xM ) · (b− a)

or
f(xm) ≤

N−1∑
k=0

f(xk) · dx

b− a
≤ f(xM )

Since f is assumed continuous on [a, b], by the intermediate value theorem, it reachesall intermediate values, hence there is a c ∈ [a, b] such that
f(c) =

N−1∑
k=0

f(xk) · dx

b− a

Lemma 3
If f is continuous on [a, b] and u and v in [a, b], then u ≃ v ⇒ f(u) ≃ f(v)

This in fact characterises uniform continuity. The difference between continuity andthis situation is that for continuity we state that for observable c and x ≃ c we have
f(c) ≃ f(x). Here u and v are not necessarily observable.For u, v ∈ [a, b], their (common) observable neighbour c is also in [a, b] (theorem 3).Hence c ≃ u and c ≃ v. So by continuity, f(u) ≃ f(c) ≃ f(v).
△! Reminder: Polynomials are not uniformly continuous on their domain.Take x2 at ultralarge values (relative to the standard context). Let u = x and v = x+ 1

xthen u ≃ v but u2 = x2 and v2 = x2 + 2+ 1
x2 the difference is 2 hence not ultrasmall.

Theorem 32
If f is continuous an [a; b] then f is integrable on [a; b]
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Exercise 110Difficult!To prove theorem 32, you must show that
(1) the observable neighbour of the sum exists, and

By lemma 2 we have f(xm) ≤ f(c) ≤ f(xM ). If a function has a maximum, byclosure, it is observable. Same for the minimum. Hence f(c) is not ultralargeand therefore has an observable neighbour.

(2) this observable neighbour does not depend on the choice of N .

that for 1
N ≃ 0 and 1

M ≃ 0 with du = b−a
N and uk = a + k · du and also dv = b−a

M and
vj = a+ j · dv then

N−1∑
k=0

f(uk) · du ≃
N−1∑
j=0

f(vj) · dv

This can be done by using ∑N ·M−1
i=0 f(wi) · dw with dw = b−a

M ·M and comparing each sumwith this one.
By symmetry, it is enough to show that

N−1∑
k=0

f(uk) · du ≃
N ·M−1∑

i=0

f(wi) · dw

Consider an interval [uℓ;uℓ+1] and the same interval [wM ·ℓ;wM ·ℓ+M ], this interval of length
du is one step in the sum of f(uk) · dx and M steps in the sum of f(wi) · dw.
... and conclude the proof.
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We need now to show that the sum does not depend on the choice of the ultralarge
N . For this, we assume that N and M are both ultralarge and that both sumsare ultraclose the the sum containing N ·M terms.
1
N ≃ 0 and 1

M ≃ 0 with du = b−a
N and uk = a + k · du and also dv = b−a

M and
vj = a+ j · dvEach interval [uℓ, uℓ+1] of the partition in N patrs, contains M subintervals ofthe partition in N ·M parts. (The same would hold exchanging v and M for uand N ).By lemma 2, there is a c ∈ [uℓ, uℓ+1] such that

f(c) · du =
M−1∑
k=0

f(xℓ+k) · dv

We write f(c(·du = f(xℓ)ḋu+ εℓḋu with εℓ ≃ 0.Then from f(xℓ) · du+ εℓ · du =
∑M−1

k=0 f(xℓ+k) · dv we sum
N−1∑
ℓ=0

f(xℓ) · du+
N−1∑
ℓ=0

εℓ · du =
N−1∑
ℓ=0

M−1∑
k=0

f(xℓ+k) · dv

The second sum is ultraclose to zero by lemma 1. The third sum is a concatenationof intervals. Hence
N−1∑
ℓ=0

f(xℓ) · du ≃
N ·M−1∑
j=0

f(xj) · dv

Theorem 33 (Continuity of the Integral)
If f is continuous on [a, b] then F (x) =

∫ x

a
f(t) · dt is continuous on [a, b].

We need to show that ∫ x
a f(t) · dt ≃

∫ x+dx
a f(t) · dt where dx ≃ 0 relative to the context of

f, a and x.But for the integral ∫ x+dx
a f(t) · dt the context is f, a, x and also dx, hence we need to usean extra context of ultrasmallness! We write 1

N

+≃ 0 to indicate an ultralarge relative to thisextended context. We can use the same N for the first integral since integrability means that itdoes not matter which N is chosen provided it is ultralarge (theorem 32).The idea is to divide the intervals [a, x] and [a, x+ dx] into the same number of pieces.Since x is a constant here, we will use t ∈ [a, x] and u ∈ [a, x+ dx] as variables.
Exercise 111Try to complete the proof
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This is the only case, in the handout, where we work on three contexts.
We cannot use additivity of the integral since we need continuity to prove additivity!

Note that in this approach, we use even partitions hence when considering ∫ b
a +

∫ c
band ∫ c

a we would have no guarantee that the partition of the last integral correspondsto the partitions of the first two. This is probably the most difficult proof of the wholecourse.
Consider ∫ x

a f(t) · dt and ∫ x+dx
a f(t) · dt .We write 1

N

+≃ 0 to indicate an ultralarge relative to the extended context of a, xand dx.By theorem 32, we can use the same N for both integrals.(visualisation by showing a partition of two intervals by same number)
0

0

1

1

2

2

3

3

4

4

5

5

∆t

∆u

∆u = ∆t+ 1
5∆t

6

Let N ∈ N be ultralarge relative to this extended context. Let dt = x−a
N and

du =
x+ dx− a

N
=

x− a

N
+

dx

N
= dt+

dx

NLet tk = a+ k · dt and uk = a+ k · du then
uk = k · dt+ k · dx

N
= tk + k · dx

N
≃ uk

By lemma 3, uk ≃ tk ⇒ f(uk) ≃ f(tk) so we write
f(uk) = f(tk) + εk for εk ≃ 0

hence ∫ x+dx

a
f(u) · du ≃

N−1∑
k=0

f(uk) · du =

N−1∑
k=0

(f(tk) + εk) · (dt+
dx

N
)

=

N−1∑
k=0

(f(tk) · dt︸ ︷︷ ︸
+
≃
∫ x
a f(t)dt

+

N−1∑
k=0

f(tk)

N
· dx︸ ︷︷ ︸

≃0

+

N−1∑
k=0

εk · dt︸ ︷︷ ︸
+
≃0

+

N−1∑
k=0

εk
N

· dx︸ ︷︷ ︸
≃0

The three last sums are all of the form of stated in lemma 1Hence
≃

∫ x

a
f(t) · dt
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Theorem 34 (Additivity of the integral)
Let f be a real integrable function continuous on [a; c] and b ∈ [a; c]. Then∫ b

a
f(x) · dx+

∫ c

b
f(x) · dx =

∫ c

a
f(x) · dx.

Exercise 112Prove theorem 34.
The context is given by f, a, b and c.Divide the interval [a; c] into an ultralarge number of even parts as usual. Then b is oris not on one of the partition points. If it is, nothing is to be added. If not, then thereis a j such that xj < b < xj+1. Extend the context to xj and eedivide each intervalinto an ultralarge number of parts so that:∫ c

a
f(x) · dx ≃

N−1∑
k=0

f(xk) · dx =

j−1∑
k=0

f(xk) · dx+ f(xj) · dx+
N−1∑
k=j+1

f(xk) · dx

≃
j−1∑
k=0

f(xk) · dx︸ ︷︷ ︸
≃

∫ xj

a

+

N−1∑
k=j+1

f(xk) · dx︸ ︷︷ ︸
≃

∫ c

xjand by continuity: ∫ xj

a
≃

∫ b

a
and ∫ c

xj+1

≃
∫ c

b

Theorem 35
If f is a continuous function on [a, b] then

F (x) =

∫ x

a
f(t) · dt

is an antiderivative of f on ]a, b[ and the only one satisfying F (a) = 0.

Exercise 113Prove theorem 35 starting with the definition of the derivative applied to the integral. Bytheorem 32, it is integrable.
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By additivity:
F (x+ dx)− F (x) =

∫ x+dx

x
f(t) · dt

By lemma 2, there is a c ∈ [x, x+ dx] such that∫ x+dx

x
f(t) · dt = f(c) · dx

hence
∆F (x)

dx
= f(c) ≃ f(x)

by continuity of f since x ≃ c. hence F ′(x) = f(x).
Theorem 36 (Fundamental theorem of Calculus)
Let f be a function continuous on [a; b]. Let F be an antiderivative of f on [a; b]. Then∫ b

a
f(x) · dx = F (b)− F (a).

The method used in the proof can also be seen as looking at the link between the globalvariation of a function F and its derivative f .
Exercise 114Consider the variation of F between a and b.Let n ∈ N such that 1/N ≃ 0 and dx = b−a

N and xk = a+ k · dx.Then clearly, we have
F (b)− F (a) =

N−1∑
k=0

∆F (xk)

Here the context is f, a, b – not necessarily any given xj!(1) On each interval [xk, xk+1] (which is also in the form [xk, xk + dx]) there is a c such that
F (xk + dx)− F (xk) = f(c) · dx,

Why is this? By what theorem?
(2) Explain why we have f(c) ≃ f(xk).(3) Conclude by explaining why:

N−1∑
k=0

F (xk + dx)− F (xk) =

N−1∑
k=0

f(xk) · dx+

N−1∑
k=0

εk · dx ≃
N−1∑
k=0

f(xk) · dx

Hence, the global variation of F between a and b is, up to an ultrasmall value, the sum of
F ′(xi) · dx provided F ′ is continuous on [a, b].

82



CHAPTER 8. INTEGRALS

Page 73 we looked at one slice of the area under a positive function. Now we show that ifwe sum up all slices on the area under a curve, the antiderivative gives the answer. Hence wehave area ≃
N−1∑
i=0

f(xk) · dx.

a bxk

xk

f(xk)

dx

area of rectangle is f(xk) · dx

△! The drawing can be misleading. It is only a specific case. A continuous functiondoes not necessarily appear as a straight line under magnification. The extreme value theoremensures that it has a maximum and minimum on the interval.
Notation: we write

F (x)
∣∣∣b
a
= F (b)− F (a).

If bounds are given, the integral represents a value: it is a definite integral. If no boundsare given, it represents an antiderivative: it is an indefinite integral.
Exercise 115Show that for a definite integral, it does not matter which antiderivative is chosen.
Exercise 116What conditions would a function need to satisfy in order to be non-integrable? Give sucha function.
Exercise 117A constant function f : x 7→ C from a to b defines a rectangle. Check that the area under fis the “usual” formula: (b− a) · C
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Exercise 118The function y = x defines a triangle. Show that the area of the triangle from 0 to a yieldsthe “usual” result for the area of a triangle.
Exercise 119

(1) Calculate the area between the curve and the x-axis for y = x2 from x = −5 to x = 5.
(2) Calculate the area between the curve and the x-axis for y = x3 from x = 0 to x = 3.
(3) Calculate the area between the curve and the x-axis for y = x3 from x = −2 to x = 0.
(4) Calculate the area between the curve and the x-axis for y = x3 from x = −10 to x = 10.

Notice that the integral can be a negative value. If f represents the velocity of an object, anegative integral means that the distance is becomming smaller. If the integral is equal to zero,the object is back where it started.
So far we have assumed that an area function exists. Now we can give a definition.

Definition 22 (Area)
The area between a positive continuous function and the x-axis, on an interval [a; b] is given by
the integral of the function on [a; b].

Exercise 120Calculate the mean value of x 7→ x2 on [−4; 4].

Linearity

Theorem 37 (Linearity of the integral)
Let f and g be real functions continuous on [a; b]. Let λ, µ be real numbers. Then

(1) ∫ b

a
(λ · f(x)) · dx = λ ·

∫ b

a
f(x) · dx

(2) ∫ b

a
(f(x) + g(x)) · dx =

∫ b

a
f(x) · dx+

∫ b

a
g(x) · dx.

Note that if f and g are integrable then all linear combinations of f and g are integrable.
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Theorem 38 (Monotonicity of the integral)
Let f be a real function continuous on [a; b].

(1) If f(x) ≥ 0 (resp. > 0) for each x ∈ [a; b] then∫ b

a
f(x) · dx ≥ 0 (resp. > 0).

(2) If f(x) = 0 for each x ∈ [a; b] then ∫ b

a
f(x) · dx = 0.

(3) If f(x) ≤ 0 (resp. < 0) for each x ∈ [a; b] then∫ b

a
f(x) · dx ≤ 0 (resp. < 0).

Exercise 121Prove theorems 37 and 38.
Exercise 122Prove theorem 39.
Theorem 39 (Integration by parts)
Let f and g be real functions continuous on [a; b] such that f ′ and g′ are continuous on [a; b].
Then ∫ b

a
f ′(x) · g(x) · dx = f(x) · g(x)

∣∣∣∣b
a

−
∫ b

a
f(x) · g′(x) · dx.

Example: Consider the integral ∫ π/2

0
x · sin(x) · dx.

To integrate by parts, use f ′ : x 7→ sin(x) et g : x 7→ x. We have f(x) = − cos(x) and g′(x) = 1,hence ∫ π/2

0
x · sin(x) · dx = −x · cos(x)

∣∣∣∣π/2
0

+

∫ π/2

0
cos(x) · dx = sin(x)

∣∣∣∣π/2
0

= 1.

We also deduce that ∫
x · sin(x) · dx = −x · cos(x) + sin(x) + C.

Exercise 123Use integration by parts to compute the following integrals:

85



CHAPTER 8. INTEGRALS

(1) ∫
x · cos(x) · dx

(2) ∫
(cos(x))2 · dx

(3) ∫
x2 · sin(x) · dx

(4) ∫
sin(x) · cos(x) · dx

Exercise 124For each of the following functions, find an antiderivative:
(1) f : t 7→ 3t2 + 1(2) f : t 7→ 4− 3t3(3) f : s 7→ 7s−3

(4) f : x 7→ (x− 6)2

(5) f : y 7→ y
3
2

(6) f : x 7→ |x|

(7) f : u 7→ u2 + u−2

(8) f : x 7→ 4

(9) f : t 7→ t

(10) f : z 7→ 2

z2

Check your results by differentiating them.
Exercise 125

(1) If F ′(x) = x+ x2 for all x, find F (1)− F (−1).
(2) If F ′(x) = x4 for all x, find F (2)− F (1).
(3) If F ′(t) = t

1
3 for all t, find F (8)− F (10).

Exercise 126The following computation may seem correct: ∫ 1
−1 x

−2dx = − 1
x

∣∣∣∣1
−1

= −2 yet there is no
x ∈ [−1, 1] such that f(x) < 0. By theorem 38 we should therefore have a positive value for theintegral. Why is this not so?
Theorem 40 (Integration with inside derivative)
Let f and g be real functions differentiable on [a; b] such that f ′ and g′ are continuous on [a; b].
Then ∫ b

a
f ′(g(x)) · g′(x) · dx = f(g(x))

∣∣∣∣b
a

.

Exercise 127Prove theorem 40.
Exercise 128Compute the following integrals:
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(1) ∫
2x · sin(x2) · dx

(2) ∫
x2 · (x3 + 1) · dx

(3) ∫
sin(x) · cos(cos(x)) · dx

(4) ∫
sin(x) · cos2(x) · dx

Variable substitution

Consider ∫ b

a
f(x) · dx.If x is a function of u written x = g(u) then dx = g′(u) · du,

f(x) becomes f(g(u)) and the limits must be changed to a1 and b1 so that g(a1) = a and
g(b1) = b

Example: Let ∫ 1

0

√
1 +

√
x · dx.

Consider the variable change u = 1 +
√
x. Then x = (u − 1)2 = g(u), the derivative of g iscontinuous. If x = 0 then u = 1 and if x = 1 then u = 2. Moreover f(g(u)) = √

u and
dx = 2 · (u− 1) · du.Replacing all terms we obtain∫ 1

0

√
1 +

√
x · dx = 2

∫ 2

1

√
u · (u− 1) · du = 2

∫ 2

1

(
u3/2 − u1/2

)
· du

so that
2

(
2

5
u5/2 − 2

3
u3/2

) ∣∣∣∣2
1

=
8 + 8

√
2

15
.

As g has an inverse which is x 7→ 1 +
√
x and is differentiable (except at x = 0), we can revertto the variable x and find an antiderivative:∫ √

1 +
√
x · dx =

4

5

(√
1 +

√
x

)5

− 4

3

(√
1 +

√
x

)3

+ C.

Exercise 129Calculate ∫ 1

0

√
5x+ 2 · dx.

Use u = 5x+ 2. Calculate du, change the bounds, calculate the integral.Same integral. Use v =
√
5x+ 2

The difficulty is usually to find which variable substitution is best.
Exercise 130Use variable substitution to evaluate the following:
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(1) ∫ 10

0

1

(2x+ 2)2
· dx

(2) ∫
(3− 4z)6 · dz

(3) ∫ 1

−1
2t
√
1− t2 · dt

(4) ∫ b

a

√
3y + 1 · dy

(5) ∫
4y

(2 + 3y2)2
· dy

(6) ∫ 2

−2
x(4− 5x2)2 · dx

(7) ∫
(1− x)

3
2 · dx

Practice exercise 18 Answer page 92
(1) ∫ 1

0

u√
1− u2

· du

(2) ∫ 2

1

u√
1− u2

· du

(3) ∫ 1

0

√
1 +

√
x · dx

(4) ∫ 10

0
t(t2 + 3)−2 · dt

(5) ∫ 5

√
6
x(x2 + 2)

1
3 · dx

(6) ∫ 1

−1

x2

(4− x3)2
· dx

(7) ∫ 2

1

1

t2
√
1 +

1

t

· dt

Variable substitution is formalised in the following theorem.
Theorem 41 (Integration by variable substitution)
Let f be a real function continuous on [a; b]. Let g be a function whose derivative is continuous
and such that for e, d ∈ R we have g(d) = a and g(e) = b. Then∫ b

a
f(x) · dx =

∫ e

d
f(g(u)) · g′(u) · du.

This formula looks probably quite difficult, but hopefully, the exercises done above show thatit amounts to a systematic procedure.
Since dx is a quantity and du = u′dx also, this theorme can be avoided as such andvariable by substitution can be given as a step by step method.

A simplified writing can be used: we have already used the writing y = f(x) where y is adependent variable and x the independent variable. When several functions are used, we canwrite u = f(x) and v = g(x), then we have (for constant c and for U ′ = u and V ′ = v):
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• c′ = 0

• (c · u)′ = c · u′

• (u+ v)′ = u′ + v′

• (u · v)′ = u′ · v + u · v′

• (u
v

)′
=

u′ · v − u · v′

v2• (u ◦ v)′ = u′ · v′ (in this case, u depends on v which depends on x).
• (xn)′ = nxn−1

• sin′(x) = cos(x)

• cos′(x) = − sin(x)

• tan′(x) = 1 + tan2(x) =
1

cos2(x)

• ∫
c · u · dx = c · U + k

• ∫
(u+ v) · dx = U + V + k

• ∫
u(v) · v′ · dx = U(v) + k

• ∫
u′ · v · dx = u · v −

∫
u · v′ · dx
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Answers to practice exercises

Answers to practice exercice 11, page 56
(1) f ′(x) = 20x3 + 3x2 − 4x

(2) g′(x) = 10
√
3x

(3) h′(x) = −x4 + 4x3 − 3x2 + 10x+ 10

(x3 − 5)2

(4) j′(x) = 20x3 − 6x− 2

(3x2 − 2x+ π)2

(5) k′(x) = 0

(6) l′(x) = − 1

x2
− 2

x3
− 3

x4
− 4

x5

(7) m′(x) =
(x2 + x+ 1)(3x2 + 2x)− (x3 + x2)(2x+ 1)

(x2 + x+ 1)2
=

x(x3 + 2x2 + 4x+ 2)

(x2 + x+ 1)2

Answers to practice exercice 12, page 56

-2 3

-15

15

Answers to practice exercice 13, page 56Tangent line is y = −4

5
x+

27

5
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-5 10

-5

7

Answers to practice exercice 14, page 56
(1) 3x2 + 2x+ 2

(2) −3x2 + 4x− 2

(3) x2 − 5x+ 6

(4) (x− 2)2

(5) x(x+ 4)

(x+ 2)2

(6) x2 + 2x− 8

(x+ 1)2

(7) 4x2 + 4x− 3

(2x+ 1)2

(8) −x2 + 6x+ 5

(x+ 3)2

(9)

1 if x > 2

−1 if x < 2not differentiable if x = 2

(10)

x(x+ 4)

(x+ 2)2
if x ≥ 0

−x(x− 4)

x− 2)2
if x ≤ 0

(11) x2 + 2x+ 2

(x+ 1)2

(12)

3x2 − 12x+ 11 if x ∈]1; 2[∪]3;∞[

−3x2 + 12x− 11 if x ∈]−∞; 1[∪]2; 3[not differentiable if x ∈ {1; 2; 3}

Answers to practice exercice 15, page 57
(1) f ′

1 : x 7→ 9x2 + 2

2
√
3x3 + 2x+ 1

(2) f ′
2 : x 7→ 10x · (x2 + 3)4

(3) f ′
3 : x 7→ an · (ax+ b)n−1

(4) f ′
4 : x 7→ 3x2

2
√
x3 + 1(5) f ′

5 : x 7→ cos(x2 + 3x) · (2x+ 3)(6) f ′
6 : θ 7→ −6 cos(3θ) · sin(3θ)(7) f ′
7 : u 7→ cos(sin(u)) · cos(u)
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(8) f ′
8 : x 7→ 8x tan(tan2(x2)(1 + tan2(tan2(x2))(tan(x2)(1 + tan2(x2))

(9) f9 : v 7→ − sin(v) (10) f ′
10 : x 7→ 0

Answers to practice exercice 18, page 88
(1) 1 Use x = 1− u2.
(2) undefined – for u > 1 we have the squareroot of a negative number.
(3) 8(

√
2+1)
15 Use u = 1 +

√
x

(4) 50
309 Use u = t2 + 3

(5) 195
8 Use u = x2 + 2

(6) 2
45 Use u = 4− x3

(7) −
√
6 + 2

√
2 Use u = 1 + 1

t
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9limits
A function f is defined on the left of a (resp. on the right) if f(x) is defined for all x ≃ a with
x < a (resp. x > a). It is clear that f is defined around a if and only if f is defined on the rightand on the left of a.
Definition 23 (One sided Continuity)
Let f be a real function and a ∈ R.

(1) Suppose that f is defined on the left of a. Then f is continuous on the left at a if x < a
and x ≃ a =⇒ f(x) ≃ f(a).

(2) Suppose that f is defined on the right of a. Then f is continuous on the right at a if
x > a and x ≃ a =⇒ f(x) ≃ f(a).It is immediate that f is continuous at a if and only if it is continuous on the right and onthe left at a.We now extend the concept of continuity at a point to continuity on an interval.

Exercise 131Prove directly that x 7→
√
x is continuous on its domain i.e, for any value x = a in thedomain.Hint: start by the definition, then multiply and divide by (

√
a+ dx+

√
a.

If we want to study the behaviour of f in the neighbourhood of a, the function f must bedefined around a, but not necessarily at a. If the function is defined in a neighbourhood of a, byclosure, it is possible to use a neighbourhood defined by observable bounds. Hence f(x) mustexist for x ≃ a but f(a) does not necessarily exist. Context is f and a.
Definition 24
A deleted interval of a is an interval around a not containing a.

The limit of f at a is the value that f should take in order to be continuous at a.
Definition 25
Let f be a real function defined on a deleted interval of a. Context is f and a. We say that f
has a limit at a if there exists an observable number L such that if we had f(a) = L then f
would be continuous at a,
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In other terms, if there is an observable number L such that
x ≃ a =⇒ f(x) ≃ L.

Of course, by this definition, if f is continuous at a, then the limit of f at a is f(a).
The limit of f at a is the observable value of f(x) when x ≃ a

The definition of limit can also be interpreted in the following way:
If f has a limit at a then it is the observable neighbour of f(a+ dx).If L is the limit of f at a we write

f(a+ dx) ≃ L

or
lim
x→a

f(x) = L,

or
lim
h→0

f(a+ h) = L.

Exercise 132Calculate
lim
x→3

2x2 − 7x+ 3

x− 3
.

Show that it is equal to
lim
h→0

2(3 + h)2 − 7(3 + h) + 3

(3 + h)− 3
.

Exercise 133Consider the signum function sgn, defined by
sgn : x 7→


−1 if x < 0,

0 if x = 0,

+1 if x > 0.

Check that sgn is defined around 0. Does it have a limit at 0?
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One Sided Limits
A function is defined on the left (respectively on the right) of a, if f(x) exists for x ≃ a, x < a(respectively x ≃ a, x > a).
Definition 26
Let f be a real function defined on the left of a. The function f has a limit on the left of a if
there is an obervable number L such that

x ≃ a and x < a =⇒ f(x) ≃ L.

If the limit on the left exists it is unique (it is the observable neighbour of f(x)). We write:
lim

x→a−
f(x) = L, or x ≃ a− ⇒ f(x) = L.

The symbol a− indicates that we choose numbers less than a.Similarly we define the limit on the right of a and write:
lim

x→a+
f(x) = L, or x ≃ a+ ⇒ f(x) = L.

The symbol a+ indicates that we choose numbers greater than a.
Exercise 134Consider f defined by

f : x 7→ sin(1/x), for x > 0.Check that f is defined on the right of 0.Does it have a limit on the right of zero?
Using limits, the derivative may be re-defined in the following way:
Let f be a real function defined on an interval containing a. The derivative of f at a is thelimit

lim
h→0

f(a+ h)− f(a)

hif the limit exists. If it exists, it is noted f ′(a). It is the derivative of f at a and f is said to be
differentiable at a.

The limit is only a rewriting. The "equal" sign used is there to say that thelimit is the value that the function can be ultraclose to.When a limit appears in a problem, the first thing to do is to rewrite it interms of ultracloseness.
We extend the definition of limit to the cases where the function reaches ultralarge values.
△! Introducing a new symbol: if relative to a context, we consider ultralarge values of xor ultralarge values of f(x), the infinity symbol "∞" is used. But no value can ever be equal

to ∞.
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△! The ∞ symbol cannot be used in operations, because it is not a number.
Definition 27
Let f be a real function defined on a deleted interval of a. The context is f and a. We say
that f tends to plus infinity (+∞) (resp. minus infinity (−∞)) at a if f(x) is positive ultralarge
(resp. negative ultralarge) whenever x ≃ a x ̸= a
written

lim
x→a

f(x) = ∞

The definition for one-sided limits is similar.Similarly
lim
x→∞

f(x) = Lstands for: there is an observable L such that f(x) ≃ L whenever x is ultralarge.
Theorem 42 (Rule of de l’Hospital for 0/0 )
Let f and g be differentiable functions at a. Suppose that f(a) = g(a) = 0, but that g′(a) ̸= 0.
Then

f(a+ dx)

g(a+ dx)
≃ f ′(a)

g′(a)

(provided f ′(a) and g′(a) exist).

Exercise 135Prove theorem 42.
Write f(a+∆x) = u+∆ and g(a+∆x) = v +∆v, then for x ≃ a we write

u+∆u

v +∆v
=︸︷︷︸

u=0,v=0

∆u

∆v
=

u′∆x+ ε∆x

v′∆x+ δ∆x
=

u′ + ε

v′ + δ
≃ u′

v′

The rule of de l’Hospital also holds for the case where a is ultralarge. And more generally
lim
x→a

f(x)

g(x)
= lim

x→a

f ′(x)

g′(x)if limx→ag
′(x) ̸= 0.

The proof of this general case goes beyond classroom work. It requires considering
x ≃ a then f ′(x) which requires ∆x ≃ 0 in the extended context of f and x, thismeans working with three levels. See the book.

Exercise 136Evaluate using de L’Hospital’s rule.
x− 1√
x2 − 1for x ≃ 1.
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Exercise 137Assuming the rule of de l’Hospital holds for the case ultrasmallultrasmall , show that it holds for the caseultralargeultralarge

Assume that f(x) = u and g(x) = v are ultralarge. Then u
v =

1
v
1
u

which is ultrasmallultrasmall so
u

v
≃

(
1
v

)′(
1
u

)′ =
− v′

v2

− u′

u2

=
v′

u′
u2

v2

Hence
u

v
≃ v′

u′
u2

v2which leads to
v

u
≃ v′

u′

Exercise 138Evaluate using de L’Hospital’s rule.
(1) 1/t− 1

t2 − 2t+ 1
for t ≃ 1 (with (t > 1)).

(2) √
x− 1

3
√
x− 1

for x ≃ 1.
(3) x2√

2x+ 1− 1
for x ≃ 0.

(4) 2 + 1/t

3− 2/t
for t ≃ 0.

(5) x+ 5− 2x−1 − x−3

3x+ 12− x−2
for ultralarge x

(6) (
t+

1

t

)
((4− t)3/2 − 8) for t ≃ 0.

(7) u+ u−1

1 +
√
1− u

for ultralarge u.

Practice exercise 19 Answer page 110Calculate the following limits. The answer should be a number, +∞, −∞ or "does not exist"
(1) lim

x→∞

6x− 4

2x+ 5(2) lim
x→∞

x3 − 10x2 − 6x− 2

(3) lim
x→∞

x2 − x+ 4

3x2 + 2x− 3

(4) lim
x→∞

√
x+ 2√
3x+ 1(5) lim

x→∞
x−

√
x

(6) lim
x→∞

3
√
x+ 2

(7) lim
x→0−

1 +
1

x

(8) lim
x→0

1

x2
− 1

x

(9) lim
x→0

1 + 2x−1

7 + x−1 − 5x−2
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(10) lim
x→2

1− x

2− x

(11) lim
x→3+

x+ 1

(x− 2)(x− 3)

(12) lim
x→3

x+ 1

(x− 2)(x− 3)

(13) lim
x→1

3x2 + 4

x2 + x− 2

(14) lim
x→2+

x2 + 4

x2 − 4

(15) lim
x→∞

√
x2 + 1− x

(16) lim
x→−∞

√
x2 + 1− x

(17) lim
x→∞

√
x2 − 3x+ 2−

√
x2 + 1

(18) lim
x→∞

3
√
x+ 4− 3

√
x

Practice exercise 20 Answer page 110Evaluate using de L’Hospital’s rule.
(1) lim

x→0

√
9 + x− 3

x

(2) lim
x→2

2−
√
x+ 2

4− x2

(3) lim
u→∞

√
u+ 1 +

√
u− 1

u

(4) lim
x→0

(1− x)1/4 − 1

x

(5) lim
t→0+

(
1

t
+

1√
t

)
(
√
t+ 1− 1)

(6) lim
u→1

(u− 1)3

u−1 − u2 + 3u− 3

(7) lim
u→0+

1 + 5/
√
u

2 + 1/
√
u

(8) lim
x→∞

x+ x1/2 + x1/3

x2/3 + x1/4

(9) lim
t→∞

1− t/(t− 1)

1−
√

t/(t− 1)
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10More on integration
Definition 28
The ∞ symbol in the bounds of an integral indicates a limit.∫ ∞

a
f(x) · dx = lim

n→∞

∫ n

a
f(x) · dx

This is calculated by taking ultralarge N in ∫ N
a and taking the observable part of the result(if it exists and is independent of N ).

Exercise 139Check that an derivative of x 7→ x

x+ 1
is x 7→ 1

(x+ 1)2
.

Sketch the curve of f : x 7→ 1

(x+ 1)2
for x > 0.Calculate the area under f between 0 and 10.Calculate the area under f between 0 and +∞

Exercise 140Do infinitely long objects have a finite area?(1) Calculate the area under f : x 7→ 1
x2 between x = 1 and x = ∞, i.e: show that this areadoes not depend on which ultralarge is chosen.(2) Without any calculation, explain why the total length of both sides (the curve above andthe straight line below) is infinite.(3) Does this prove that a finite amount of paint would be enough to cover the area but notenough to paint the border lines?

Definition 29
If the function to integrate is not defined at one of the bounds, then∫ b

a
f(x) · dx = lim

u→a+

∫ b

u
f(x) · dx

or ∫ b

a
f(x) · dx = lim

u→b−

∫ u

a
f(x) · dx
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Exercise 141Evaluate the integrals:
(1) ∫ 1

0
2x−2 · dx

(2) ∫ 3

−2
u−3 · du

(3) ∫ 2

−1
−5(t+ 1)−1/4 · dt

(4) ∫ 4

0

1

2
√
x
· dx

Exercise 142In the following problems an object moves along the y axis. Its velocity varies with respectto the time. Find how far the object moves between the given times t0 and t1.
(1) v = 2t+ 5 t0 = 0 t1 = 2(2) v = 4− t t0 = 1 t1 = 4(3) v = 3 t0 = 2 t1 = 6

(4) v = 3t2 t0 = 1 t1 = 3

(5) v = 10t−2 t0 = 1 t1 = 100

Antiderivative of x 7→ 1

x

Let n be a positive integer. From (xn+1)′ = (n+ 1) · xn we can deduce∫
xn · dx =

1

n+ 1
xn+1 + C, n ̸= −1.

Hence an antiderivative of x 7→ 1

x
is not a particular case of this formula.

Exercise 143Let f be an antiderivative of x 7→ 1
x (why is there one?). Then f is strictly increasing (why?)and so it has an inverse, call it g. Show that this implies g′(x) = g(x).

Exercise 144Let a, b > 0. Use the substitution u = t
a to show that (considering f to be the antiderivativeof 1

x .) ∫ a·b

a

1

t
· dt =

∫ b

1

1

u
· du.

Deduce that f(a · b) = f(a) + f(b).
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Exercise 145Let a > 0 and b a rational number. Show that (considering f to be the antiderivative of 1
x .)

f(ab) = b · f(a).

(To find the substition, consider the transformation of the bounds.)
Exercise 146What kind of function has the properties f(a · b) = f(a) + f(b) and f(ab) = b · f(a)?
Theorem 43
The antiderivative f of 1

x satisfies the following limits:

lim
x→0+

f(x) = −∞ and lim
x→+∞

f(x) = +∞.

Exercise 147Prove theorem 43. Hint: for ultralarge x use ultralarge N such that 2N ≤ x.
Definition 30
The natural logarithm is the function ln :]0;+∞[→ R defined by

x 7→
∫ x

1

1

t
· dt.

Definition 31
We define e to be the unique number such that

ln(e) = 1.

e is an irrational number whose first digits are
e = 2.71828 . . .

Definition 32
The exponential function exp : R −→]0; +∞[ is defined as the inverse of ln.

Thus ln is in fact loge and ln(e) = 1.We have, for rational x, that ax = exp(x ln(a)), hence ex = exp(x). For irrational x, we
define ax to be exp(x ln(a)) hence also ex = exp(x) for all x.We also have ln(ay) = y · ln(a) for all y. Writing x = ay we get ln(x) = loga(x) · ln(a) so
loga(x) =

ln(x)
ln(a) .
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Theorem 44
(1) Let b ∈ R. The function x 7→ xb is differentiable on its domain and (xb)′ = b · xb−1, for all

x ∈ R.

(2) Let a > 0. The base a exponential is differentiable on its domain and (ax)′ = ln(a) · ax,
for x > 0.

(3) Let a > 0. The base a logarithm is differentiable and (loga(x))
′ = 1

ln(a)·x .

Exercise 148Prove theorem 44.
Exercise 149Let f be a positive real function whose derivative is continuous. Calculate:∫

f ′(x)

f(x)
· dx

Exercise 150Calculate ∫
tan(x) · dx

Exercise 151Let f be a positive real function whose derivative is continuous. Calculate:∫
f ′(x) · ef(x) · dx

Exercise 152Using ln(x) = 1 · ln(x), use integration by parts to compute ∫
ln(x)dx.

Exercise 153

(1) Differentiate ln(x).
(2) Differentiate ex.
(3) Integrate x 7→ ex.
(4) Differentiate the function x 7→ ln(ln(x)).
(5) Differentiate the function x 7→ ln(xa) (Note that a is not the variable!)
(6) Differentiate the function x 7→ ln(ax).
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(7) Differentiate x 7→ ex
2 .

(8) Using the fact that u = eln(u) (if u > 0) differentiate x 7→ ax (for a > 0 and x > 0).
(9) Same idea: Differentiate the function x 7→ xx.

Exercise 154Differentiate ln(|x|).
This proves the following extension:

Theorem 45
The antiderivative of 1

x is ln(|x|) +K for some constant K .

Mean value of a function

The mean value is unambiguous when we consider n points, where n is a positive integer. Wenow show that defining the mean value of a continuous function on [a; b] as
1

b− a

∫ b

a
f(x) · dx

is a natural extension of this concept.Consider a continuous function f and the interval [a; b]. Context is a, b and f . Let N be apositive ultralarge integer. Let dx = (b − a)/N and xi = a + i · dx, for i = 1, . . . , N . Thenthe mean value of the function can be approximated by the mean value of the N points f(xi),
i = 0, . . . , N − 1. But

N−1∑
i=0

f(xi)

N
=

dx

b− a

N−1∑
i=0

f(xi) =
1

b− a

N−1∑
i=0

f(xi) · dx ≃ 1

b− a

∫ b

a
f(x) · dx,

since f is continuous on [a; b].The mean is the part of this number which is observable i.e., the integral. We thereforedefine:
Definition 33
The mean value of a function f continuous on [a; b] is

1

b− a

∫ b

a
f(x) · dx.

The mean value is a number µ such that the area under the curve is equal to µ · (b− a), i.e.,the height of a rectangle of basis (b− a) whose (oriented) area is equal to the integral.
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Theorem 46
If f is a function continuous on [a; b], then there exists a point c ∈ [a; b] such that f(c) is the
mean value of the function on [a; b].

Note that theorem 46 is a restatement of theorem 2 which is the mean value theorem, forthe antiderivative of f . When we claim that there is a c ∈ [a; b] such that
f(c) =

1

b− a

∫ b

a
f(x) · dx,

we are in fact asserting that there is a c ∈ [a; b] such that
f(c) · (b− a) =

∫ b

a
f(x) · dx = F (b)− F (a),

and as F ′(x) = f(x), we conclude that there is a c ∈ [a; b] such that F ′(c)·(b−a) = F (b)−F (a).It is also a consequence of lemma 2.
Exercise 155Calculate the mean value of x 7→ x2 on [−4; 4].
Exercise 156Calculate the mean value of x 7→ x3 on [−4; 4].
Exercise 157Let f : x 7→ x2 and the interval [0; t]. Find the value of t such that the mean value of f overthe interval is equal to π.
Exercise 158An object falling on earth satisfies the equation d(t) = 1

2gt
2 where g ≈ 9.81[m/s2], t is thetime in seconds and d(t) is the vertical distance.If an object falls for 10s, what is its average distance from its initial point?

Exercise 159An object falling on earth satisfies the equation d(t) = 1
2gt

2 where g ≈ 9.81[m/s2], t is thetime in seconds and d(t) is the vertical distance.If an object falls for 10s, what is its average distance from its initial point?
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Solid of Revolution
x

a

y

b

f

xi xi+1

f(xi)

f(xi+1)

Exercise 160An area is calculated by approximating the surface by ultrasmall rectangles. To find theformula for the volume of a solid of revolution, proceed in the same manner: consider that thesolid is ultraclose to an ultralarge number of ultrathin disks. Find the formula for the volume ofa solid of revolution given by a function f .
Exercise 161Evaluate the volume of the solid of revolution of y =

1

x
around the x-axis between x = 1and x = 10.

Exercise 162Evaluate the volume of the solid of revolution of y =
1

x
around the x-axis between x = 1and x = +∞ i.e: take an ultralarge N then show that the result does not depend on the choiceof N .

Arc length

Exercise 163Approximating the length of a curve by ultrasmall straight lines leads to the following defi-nition. Explain why it is a reasonable definition (using the drawing).
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Definition 34
Let f : [a; b] → R be smooth. Then the graph of f has length

L =

∫ b

a

√
1 + f ′(x)2 · dx.

xi xi+1

f(xi)

f(xi+1)

Exercise 164Find the lengths of the following curves:
(1) y = 2x3/2 0 ≤ x ≤ 1

(2) y =
2

3
(x+ 2)

3
2 0 ≤ x ≤ 3
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Practice exercise 21 Answer page 110Find the antiderivatives of the following functions:
• fa : x 7→ 5x4 − 2x+ 4

• fb : x 7→ x3 − 5x2 + 3x− 2

• fc : x 7→ 2x− 1

• fd : x 7→ 5

4
x4 − 3

4
x2 +

5

2
x+

3

2

• fe : x 7→ 2x+ 1− 1

x2

• ff : x 7→ 3 +
2

x2
− 5

x3

• fg : x 7→ x3 +
1

x2

• fh : x 7→ 3
√
x+

1
3
√
x

• fi : x 7→ 1√
x
+
√
x

• fj : x 7→ (x+ 1)2

• fk : x 7→ 15(3x− 2)4

• fl : x 7→ (2x+ 1)3

• fm : x 7→ (3− x)11

• fn : x 7→ (3− 4x)4

• fo : x 7→
√
3x− 2

• fp : x 7→ 1√
x− 1• fq : x 7→ 4x(3− x2)5

• fr : x 7→ (2x− 3)(x2 − 3x+ 1)4

• fs : x 7→ (3x2−4x+1)(x3−2x2+x+3)2

• ft : x 7→ (4x2 − 5x)2(16x− 10)

• fu : x 7→ (3x− 1)(3x2 − 2x+ 5)3

• fv : x 7→ 2x

(x2 + 1)2

• fw : x 7→ 2x+ 1

(x2 + x+ 3)2

• fx : x 7→ x
√
x2 + 1

• fy : x 7→ 3x2√
9 + x3

• fz : x 7→ (3x2 + 1)
√

x3 + x+ 2

• fA : x 7→ e2x

• fB : x 7→ 1

e3x• fC : x 7→ xe−x2

• fD : x 7→ 2−x

• fE : x 7→ e2x
√
1 + e2x

• fF : x 7→ x2ex

• fG : x 7→ ex sin(x)

• fH : x 7→ ex

1 + e2x

• fI : x 7→ 1

2x+ 3

• fJ : x 7→ 2x

x− 1

• fK : x 7→ x− 1

x+ 1• fL : x 7→ (ln(x))2

• fM : x 7→ cos(x)

1 + sin(x)• fN : x 7→ ln(x)

• fO : x 7→ x

x+ 1

• fP : x 7→ 1

x ln(x)
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11Curve Sketching
Practice exercise 22 Answer page 111Sketch the following

• g1 : x 7→ x ln(x)

• g2 : x 7→ x

ln(x)

• g3 : x 7→ ex

ln(x)

• g4 : x 7→ sin(
√
x)

ex• g5 : x 7→ sin(cos(x))

• g6 : x 7→ cos(sin(x))

• g7 : x 7→ ex

1 + ex

• g8 : x 7→ 1

1 + ex• g9 : x 7→ ln(x2 + 1)

• g10 : x 7→ ex

x− 2• g11 : x 7→ e−x2

• g12 : x 7→ x · ex

ln(x)
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Answers to practice exercises

Answers to practice exercice 19, page 97
(1) 3

(2) ∞

(3) 1/3

(4) 1/
√
3

(5) ∞

(6) ∞

(7) −∞

(8) ∞

(9) 0

(10) does not exist
(11) ∞

(12) does not exist

(13) does not exist
(14) ∞

(15) 0

(16) ∞

(17) 0

(18) −3/2

Answers to practice exercice 20, page 98
(1) 1/6

(2) 1/16

(3) 0

(4) −1/4

(5) 1/2

(6) −1

(7) 5

(8) ∞

(9) 2

Answers to practice exercice 21, page 107(Integration constant to be added)
• Fa : x 7→ x5 − x2 + 4x

• Fb : x 7→ 1

4
x4 − 5

3
x3 +

3

2
x2 − 2x

• Fc : x 7→ x2 − x

• Fd : x 7→ 1

4
x5 − 1

4
x3 +

5

4
x2 +

3

2
x

• Fe : x 7→ x2 + x+
1

x

• Ff : x 7→ 3x− 2

x
+

5

2x2

• Fg : x 7→ x4

4
− 1

x

• Fh : x 7→ 3

4

3
√
x4 +

3

2

3
√
x2

• Fi : x 7→ 2
√
x+

2

3

√
x3

• Fj : x 7→ 1

3
(x+ 1)3

• Fk : x 7→ (3x− 2)5

• Fl : x 7→ 1

8
(2x+ 1)4

• Fm : x 7→ − 1

12
(3− x)12

• Fn : x 7→ − 1

20
(3− 4x)5

• Fo : x 7→ 2

9

√
(3x− 2)3

• Fp : x 7→ 2
√
x− 1

• Fq : x 7→ −1

3
(3− x2)6

• Fr : x 7→ 1

5
(x2 − 3x+ 1)5

• Fs : x 7→ 1

3
(x3 − 2x2 + x− 3)3

• Ft : x 7→ 2

3
(4x2 − 5x)3
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• Fu : x 7→ 1

8
(3x2 − 2x+ 5)4

• Fv : x 7→ − 1

x2 + 1

• Fw : x 7→ − 1

x2 + x+ 3

• Fx : x 7→ 1

3

√
(x2 + 1)3

• Fy : x 7→ 2
√
9 + x3

• Fz : x 7→ 2

3
(x3 + x+ 2)

√
x3 + x+ 2

• FA : x 7→ e2x

2

• FB : x 7→ − 1

3e3x

• FC : x 7→ −e−x2

2

• FD : x 7→ − 1

ln(2)
2−x

• FE : x 7→ 1

3
(e2x + 1)

3
2

• FF : x 7→ ex(x2 − 2x+ 2)

• FG : x 7→ ex

2
(sin(x)− cos(x))

• FH : x 7→ arctan(ex)− π

2

• FI : x 7→
ln(x+ 3

2)

2• FJ : x 7→ 2x+ 2 ln(x− 1)

• FK : x 7→ x− 2 ln(x+ 1)

• FL : x 7→ 2x

(
ln(x)2

2
− ln(x) + 1

)
• FM : x 7→ ln(sin(x) + 1)

• FN : x 7→ x ln(x)− x

• FO : x 7→ x− ln(x+ 1)

• FP : x 7→ ln(ln(x))

Answers to practice exercice 22, page 109
(g1)

x

y

(g2)
x

y

(g3)
x

y

(g4)

x

y

(g5)
x

y (g6)

x

y
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(g7)

x

y

(g8)
x

y

(g9)
x

y

(g10) x

y
(g11)

x

y

(g12)
x

y
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