
Analysisusing ultrasmall numbers

Infinity itself looks flat and uninteresting. [. . . ] The
chamber [. . . ] was anything but infinite, it was just very
very very big, so big that it gave the impression of infinity
far better than infinity itself.
(Douglas Adams: The Hitchhiker’s Guide to the Galaxy) A project byProf. Mirko Maraldi (Bologna)andDr. Richard O’Donovan (Geneva)
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Preface for Instructors
Trained mathematicians all understand the following definition of continuity

(∀ε > 0) (∃δ > 0) (∀x) |x− a| ≤ δ ⇒ |f(x)− f(a)| ≤ ε (*)
and all trained instructors know that, at introductory level, it is very complicated and students’understanding is not easy. The pedagogical solutions range from hand waving to metaphorsinvolving undetermined arbitrarily small quantities, or an unformalised concept of infinitesimal.Admittedly, they do lead to students’ understanding – at the cost of losing training in rigour.Another way to circumvent the difficulty is to change the approach and use a version ofnonstandard analysis – this is the choice we have made. It leads to defining continuity, with thesame level of rigour as above, by

(∀x) x ≃ a ⇒ f(x) ≃ f(a) (**)
There is a difficulty for the instructor. They probably have learned mathematics the main-stream way; it also means that the definition of continuity given at the top of the page was wellunderstood. Furthermore, they have been working in a context where infinitesimals are at mosta metaphor.Introducing quantities that are ultrasmall or ultralarge will require accepting the challengeof changing some fundamental intuitions.
We do not question the efficiency or the correctness of the mainstream way of doing math-ematics. We are concerned with maintaining a good level of rigour while introducing analysis,leaving open the possibility to go further in the same direction or switching to the classical ε−δmethods if required once the concepts have been understood.
The traditional writing of a limit

lim
x→a

f(x) = L

reads
f(x) tends to L when x tends to a

but one of the pedagogical difficulties is that each part of the sentence is meaningless whenconsidered alone; x cannot tend to a by itself. Similarly with ”f(x) tends to L”. The conceptmust be grasped in its entirety or not understood at all1. This is a big piece to swallow!At introductory level, showing the full ε-δ definition certainly does not make things easierespecially with the dependency of δ on ε.
Many difficulties disappear or become more palatable when using the concept of ultrasmallnumbers. In particular, the limit is defined in such a way that each part of the sentence in (∗∗)has a meaning on its own – hence didactic and intellectual steps are smaller.
Most mathematicians have an intuitive idea of infinitesimals. These mental representationsare often used to explain the fundamental concepts before rigorous formalisations are given.

1Do we need to remind the reader that x never really moves towards a?
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Recent work by Karel Hrbacek, based on Yves Péraire’s research offers a new formalisation ofthese ideas, mathematically rigorous yet still reasonably close to intuitive ideas and with a lowerlevel of technical complexity. One of the authors and Olivier Lessmann have adapted this workto Geneva high school level and several teachers have been using it for nearly twenty years.
There have been several previous attempts to use nonstandard analysis for teaching, byKeisler [4], Stroyan [16] or Robert [15] for instance. These approaches used different approachesbut one limitation was common to all: if h is infinitely small (in a way clearly defined in eachtheory) the derivative of f : x 7→ x2 was easy at x = 2 but difficult at x = 2 + h. The approachused here does not have this drawback.
More can be read about this approach in the article by Hrbacek et al. [1] and the book”Analysis with ultrasmall numbers” [2]. A point worth mentioning is that the principles addedhere extend classical set theory in such a way that no contradiction can be derived from them. Inaddition, it means that if a statement is written which does not use the concept of ultracloseness,a statement which could be read in the usual mathematics without the concept of observability,then it is true in one of the approaches if and only if it is true in the other: we are talking aboutthe same things. This is discussed in Hrbacek et al. [2] with a similar proof by Péraire [14].Several presentations have been made in Italy by one of the authors in meetings by Analisinon standard per le scuole superiori.

Observability and ultrasmall numbers
Extra axioms are used which allow to make an extra distinction within the real numbers: observ-ability. It is the descriptive power of our mathematical language which is increased. No newobjects are added.The intuitive approach is to consider that the interval [0, 1] contains infinitely many numbers– in the usual sense of the word: there is an uncountable infinity of real numbers in thatinterval. So some of these numbers must be really extremely very very close to each other andtheir difference must be really very very small. What we will do here is give a rigorous meaningto this intuitions about being extremely close.Then “ordinary numbers” (the ones defined without this new concept, the ones such as
1, 2,

√
2, e, π . . . ) are observable but that there are extremely small numbers which are so tinythat they are not observable. And if such a tiny number h is added to 2, then 2 + h is lessobservable than 2.

The only new symbol is ”≃” which reads ”ultraclose”: a difference which is ultrasmall orzero.
An ultrasmall number has the ”flavour” of an infinitesimal.

△! The reason why we do not use the word ”infinitesimal” is that the reciprocal of aninfinitesimal would seem to be an infinitely large. But these distinctions are made within thereal numbers, none of which are infinite in the classical way of defining the word. So in orderto avoid confusion, we introduce the words ultrasmall and ultralarge, and the reciprocal of anultrasmall is ultralarge. Obviously, there still is no reciprocal for 0.
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Preface for Students

Calculus was developed independently by Isaac Newton (1642–1727) and Gottfried Wilhelm vonLeibniz (1646–1716) in the last third of the seventeenth century as a general method for thestudy of changing quantities (functions). They approached the subject from different viewpoints.In order to understand the difference, let us look at a simple example of an important problemof calculus.We consider a point-like object P moving in a straight line2. The position of P at time t isdetermined by the distance s(t) of P from a fixed origin O.

time

distance

s(t)

t

A fundamental assumption of mechanics is that the moving object has, at each time t, a definiteinstantaneous velocity v(t), and one of its basic problems is to determine this instantaneousvelocity, assuming that the distance function is known.We begin by observing that the average velocity in an interval, say from t to t +∆t where
∆t > 0, can be obtained by a straightforward algebraic computation.If s(t) is the distance of the object from the origin at time t, s(t+∆t) is its distance from theorigin at time t + ∆t, hence, during the time interval from t to t + ∆t the object has travelledthe net distance ∆s equal to s(t+∆t)− s(t), with the average velocity

∆s

∆t
=

s(t+∆t)− s(t)

∆t
. (1)

time

distance

s(t)

t t+∆t

s(t+∆t)

2Note that the trajectory is a straight line, but this does not mean that the object moves at constant speed.
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If we want to use something similar to equation 1 to define the instantaneous velocity, thequestion is about s at time t, and the quantity ∆t would be just a convenient temporary variableand one of the goals here is to find a way to get a result which would be independent of thechoice of the particular ∆t.As an instant has no measurable duration, one might think that the instantaneous velocity
v(t) at time t could be obtained from equation (1) by setting ∆t = 0. However, this idea does notwork because the resulting expression will contain a division by zero which is mathematicallymeaningless.Newton considered the quantity ∆t to vary until is was ”vanishingly small” yet not zero.This led to a formalisation by Karl Weierstrass. In this approach, no ”infinitesimal quantities”are considered.The resulting theory has proven to be extremely fruitful but difficult to grasp at the intro-ductory level.Leibniz considered that ∆t was an infinitesimal quantity. It was only in 1960 that AbrahamRobinson (1918–1974) showed how to work rigorously with infinitesimal quantities. It wasfollowed by Edward Nelson, Petr Vopěnka, Karel Hrbacek and others.The approach used in this book is based on a similar concept that uses ultrasmall quantitiesand has been developed with the aim of simplifying the learning of calculus yet remainingrigorous.

Some exercises have worked out solutions and are named Practice Exercise followed by anumber and a reference to the page where the answer is.
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Prologue

Velocity and position
Suppose the velocity3 of a car is constant and equal to 60km/h. The function4 which describesthe position of the car along its trajectory is a straight line.

position

time1h 2h 3h 4h 5h
60km

120km
180km
240km

Since the velocity is constant, the function which describes the velocity is a horizontal line.
velocity

time1h 2h 3h 4h 5h

60km/h

3Velocity is speed with a direction. Speed is always positive (or zero); velocity can be negative.4Function: relation between an input set (usually represented by variables x or t) and an output set (usuallyrepresented by y) such that to each and every input corresponds exactly one output.
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The vertical units are different in each graph so there is no requirement that the gridscorrespond.
The input (horizontal) is time, so the unit can be hours. The output (vertical) for position canbe kilometres. The output for velocity can be kilometres per hour.On the position graph, the velocity is given by the slope verticalhorizontal , which in units is km

hOn the velocity graph, the variation of position is given by velocity×time, which in units is
km
h × h = km. And this is an area!5

△! Note the difference: velocity (deduced from position) is local. It ispossible to give the velocity at any given time. Position (deduced from ve-locity) is global. It is only possible to find the variation of the position overan interval of time.

Processes

Suppose you have a certain amount of gas, at high pressure, enclosed in a container that has amoving wall. Intuitively, the pressure of the gas is able to displace away the moving wall and,in doing so, the chamber increases its volume and the gas is less compressed. Suppose that youneed to calculate the product between the gas pressure and the volume increase produced bythe pressure. Indeed, the container in our example is very similar to the combustion chamberof an internal combustion engine (those of the kind you might find under the hood of your car,if it is not electric of course) and the product between the gas pressure and the volume changethat it produces is the mechanical work (roughly speaking, the energy) that you can extract fromthe engine. Now, while the moving wall is displacing, the chamber volume is increasing, andthe gas pressure inside the chamber does not remain constant; it decreases. The gas inside thecontainer is undergoing a thermodynamic process. An important question immediately arises:what value of the gas pressure should we take to calculate the mechanical work: the initialpressure, the final pressure, or some pressure in between the initial and the final stage of theprocess? If we consider the entire process as a whole, the question is relevant. However, thequestion becomes less relevant if we break the whole process into tiny pieces and consider justone of such pieces. During that small part of the process, the gas pressure will change, but thechange will be small.To calculate the mechanical work during the small piece of process, we will take the (small)volume variation produced by the gas and we will multiply it by the mean pressure during thepiece of process. This is equivalent to assuming that the gas pressure remains constant duringthe small process. Indeed, we commit a slight error in such assumption.We have now been able to calculate the mechanical work done during a small piece of theentire process. To calculate the overall work done during the whole process, we just need tosum all the work done during all the pieces.
5The area is a measure, whereas the surface is a physical object. The unit for an area on a graph is the productof horizontal unit by vertical unit. The resulting unit can very well be a distance.
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pressure

volume
p

f

small partof process

zoom

pressure

volume
f

The start of the journey
What if the function is not a straight line?A curve can be approximated by a piecewise linear function whose slope is easily calculatedby pieces. It can also be approximated by a “staircase” function whose area is calculated byadding the areas of the rectangles.

But how much information is lost in the approximation process?The main goal of the subject called mathematical analysis is to check when and howto approximate a curve by pieces of straight lines and when and how to approximate areas byrectangles and to understand what these can be used to calculate.Intuitively, it should seem clear that in order for the approximation to be good, the pieces ofstraight lines or the rectangles must be small – or that the number of pieces is large – so thatthe straight lines are never far from the curve. The crucial questions are: How small? and Howlarge? How close?As mentioned page viii, for the slope, the question is about the function and the point atwhich the slope is to be found; for the area, the question is about the function and about theinterval over which the area is to be found. All other variables are convenient temporary variablesand the situation is not really about these. Furthermore, results should be independent of theiractual value.

3



4



Chapter 1

Numbers and functions

Natural numbers
The first numbers encountered by children are counting numbers.In mathematics, we start by whole numbers or natural numbers.They differ from counting numbers by starting with 0.The set (or collection) of these numbers is symbolised by N. It is an infinite set and can beindicated by giving (between curly braces) its first elements and continuing with dots.

N = {0, 1, 2, 3, 4, . . . }To indicate that a number is a natural number, the ∈ symbol is used.
0 ∈ NThis reads as “zero is in N” or “zero belongs to N”.These numbers have some specific properties:

• Every set of natural numbers has a smallest element
• If n ∈ N, then n+ 1 ∈ N(in the natural numbers, there is a “next number”)
• If a and b are natural numbers, then a+ b ∈ N and a · b ∈ N

• If a and b are natural numbers, a − b and a : b are not necessarily natural numbers.
5− 3 ∈ N but 4− 7 /∈ N, similarly 12 : 4 ∈ N but 12 : 5 /∈ NThis is the closure of N under addition and under multiplication, meaning that theresult is of the same kind of numbers.The natural numbers are not closed under division or subtraction, because the resultof a subtraction or of a division is not necessarily a natural number.

Integers
To allow for closure under subtraction, the set of Integers is conceived. Integers are obtainedby extending the natural numbers to the negative side.
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CHAPTER 1. NUMBERS AND FUNCTIONS

Z = {0,+1,−1,+2,−2,+3,−3,+4,−4 . . . }

Note that the number 2 ∈ N is the same number as +2 ∈ Z. The ”plus” sign is unnecessary
when the only numbers used are positive, but it can be useful to clarify when both negative and
positive numbers are used. When no sign is in front of a number, it is assumed to be positive.

These numbers have some specific properties:
• not every set of integers has a smallest element: it can extend to infinity on the positiveand also on the negative side.
• If n ∈ Z, then n+ 1 ∈ Z and n− 1 ∈ Z(in the integers, there is a “next number” and there is a “previous number”)
• If a and b are integers, then a+ b ∈ Z, a− b ∈ Z and a · b ∈ NThis is the closure of Z under addition, subtraction and under multiplication.The integers are not closed under division.
• If n is an integer, then −n is an integer (note that since n can be positive or negative,one must not assume that −n is negative).

Infinity
We have used the expression “the set is infinite” and “it can extend to infinity.” We clarify herethe meaning.We say that a set is infinite if there is no natural number which can be used to say how manyelements there are in the set. Here, we are concerned with counting the number of elements inthe set.Example: the set of all even natural numbers is infinite.

Proof: Assume n is the number of even numbers, this means that 2n is the greatest even
number. But 2n + 2 is also an even number so there would be n + 1 even numbers. Which
contradicts the assumption that there is a number that can count the even numbers.

If we write that a set of natural numbers extends to infinity, we mean that there is no naturalnumber which is bigger than all numbers in the set. Here, we are concerned with identifyingthe biggest element in the set.For example, the set of even numbers extends to infinity, since no number can be writtenwhich is bigger than all the other even numbers.In other words, this means that no natural number is in itself infinite, since no natural numbercan be bigger than all natural numbers including itself.For negative integers a similar reasoning applies: no negative number can be smaller thanall negative integers so there is no negative infinite integer.These two sets are infinite sets of finite numbers.The symbol for “extends to infinity” is ∞. If a set extends to infinity on the negative side,the symbol −∞ is used.
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CHAPTER 1. NUMBERS AND FUNCTIONS

△! The infinity symbol (∞) is not the symbol of a number and cannot be used in opera-tions, other than indicating that it is a negative infinity by adding the minus sign in front: −∞.
All numbers in N and Z are finite yet there are infinitely many of them...

Rational numbers
To extend closure to the division operation, rational numbers are conceived. Fractions areintroduced to characterise rational numbers, symbolised by Q.

Q = {0, 1, −1,
1

2
, −5,

3

2
, −3, 7, −41

17
. . . }

These numbers have some specific properties:
• If a and b are rationals (written a, b ∈ Q), then a + b ∈ Q, a − b ∈ Q, a · b ∈ Q, and, if
b ̸= 0, a

b ∈ Q.This is the closure of Q under addition, subtraction multiplication and division (exceptdivision by zero).
• If n and m are in Q, then n+m

2 is in Q and is between n and m. (This is called density.)(Between any two rational numbers is another rational number – hence infinitely manyrational numbers.)
△! As a consequence: there is no immediate next number and no immediate previousnumber in the rationals.• The decimal expression of a rational number is either a decimal number of finite length oreventually has a repeating sequence of digits after the decimal point.

Real numbers

Practice exercise PE1 Answer page 119Prove that √2 /∈ Q
Hint: assume there is a fraction in simple form equal to

√
2 (therefore that its square is

equal to two) and try to deduce that in fact it is not in simple form, hence assuming there was
a fraction equal to

√
2 is contradictory.

To allow closure under the square root operation, real numbers are conceived. A num-ber whose decimal expansion does not end nor repeat is not a rational number. Examples:
0.12345678910111213 . . . , 1.101001000100001 . . . are not rational numbers. These are realnumbers.Real numbers are closed under addition, subtraction, multiplication, division and rootsand are symbolised by R.
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CHAPTER 1. NUMBERS AND FUNCTIONS

Another important property of the set of real numbers is that it is a dense set (see page7). This means that there is no immediate predecessor or immediate successor: there is no nextnumber after, say, 2. It is not possible to go from 2 to 3 by going from one number to the next.Yet even though there is no immediate successor or predecessor, numbers which are smaller thana given number, will be said to be ”before” that number, and those which are greater are ”after”that number.When drawing the real number line, number which are before are on the left, and those thatare after are on the right. The line is oriented.
before a after a

a

About successors

Whether a set of numbers satisfies the successor property or not is crucial for analysis. Imaginethe area under a staircase function (see page 3):
pressure

volume

a(k)

a(k + 1)

a(1) a(n)

It is possible to calculate the area by calculating the area of each rectangle, written as
a(1), a(2), . . . a(k), a(k + 1), ..., a(n) and add all of these by adding them one after the othersince that is the way addition is performed.This is a crucial point; it is not possible to add all numbers in a series in one step. Addition isdefined between two numbers: we add the first two, then the third to this result and so on, untilthe last one (a(n)).

Now imagine we want to calculate the area under a curve given by a function f . If we wantedto add the area under all the points, the starting point is clear but there are two immediate bigproblems.
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CHAPTER 1. NUMBERS AND FUNCTIONS

f

start
The first problem is that the first area to add seems to be zero (the area under a single point,the area of a line, which according to geometry has no width). The second problem is that evenif we solve the first problem, there is no next value to add: there is no successor for the addition.Approximating the curve by a staircase function does not immediately solve the problem:pressure

volume
f

zoom
xk

If we approximate the curve by a staircase, on the part in the zoom, there seems to be amore or less triangular part missing on the top left and a bit too much on the top right. Sincewe do not yet know how to calculate the exact area under the curve, we cannot be certain thatthey compensate exactly. But we can add one rectangle to the next one.Hence dividing the area into slices, enables to calculate each slice and sum up the piecesby adding them one after the other. The area of a single slice is given by height times width:
f(xk) times ”the width of the slice”, where xk is the midpoint of the slice.As mentioned on page 3, one of the main goals of analysis is to go from approximation toexact result and this is done by slicing dense sets into pieces where the successor relation holds– and then some extra work is still needed. . .
Intervals of real numbers
An interval of real numbers is the set of all real numbers between two bounds. In the following,“all numbers” means “all real numbers”.The following cases may occur, for a and b both in R• [a, b] : all numbers between a and b, including a and b (closed interval)Alternative notation {x ∈ R | a ≤ x ≤ b} which reads ”all x in R such that a is less thanor equal to x which is less than or equal to b”.
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CHAPTER 1. NUMBERS AND FUNCTIONS

• [a, b[ : all numbers between a and b, including a excluding b (interval closed on the left,open on the right)Alternative notation {x ∈ R | a ≤ x < b}

• ]a, b] : all numbers between a and b, excluding a including b (interval open on the left,closed on the right)Alternative notation {x ∈ R | a < x ≤ b}

• ]a, b[ : all numbers between a and b, excluding a and b (open interval)Alternative notation {x ∈ R | a < x < b}

• [a,∞[ : all numbers greater than a, including aAlternative notation {x ∈ R | a ≤ x}

• ]a,∞[ : all numbers greater than a, excluding aAlternative notation {x ∈ R | a < x}

• ]−∞, b] : all numbers less than a, including aAlternative notation {x ∈ R | x ≤ b}

• ]−∞, b[ : all numbers less than a, excluding aAlternative notation {x ∈ R | x < b}

• ]−∞,∞[ : all real numbers
The number on the left of the interval notation is not larger than the number on the right.Note that an interval is always open on the side of the infinity symbol, since infinity cannotbe reached. . . 1
An interval of real numbers contains either zero elements (denoted by ∅), one element orinfinitely many elements. Because of the density property, as soon as there are two distinctelements there are infinitely many elements in between.
]1, 1[= ∅ : an empty set.
[1, 1] = {1} : a set containing only one element.
[0, 1] : a set that contains infinitely many elements.

Tiny and huge

If an interval such as [0, 1] contains infinitely many numbers, the distance between some of themmust by tiny – in some sense to be specified. We explore intuitively some of the properties thatthese tiny numbers can have.Other names are ”infinitely small” and ”ultrasmall”. Some of the properties may differ accord-ing to how they are mathematically defined, but we concentrate here on intuition. In section 2,page 17, a more rigorous formalisation is given.
1For the meaning of the ∞ symbol, reread caution note on page 7.)
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CHAPTER 1. NUMBERS AND FUNCTIONS

When working with the concept of tiny numbers, some fuzziness is to be expected: someresults will simply state that two numbers are extremely close: their difference is tiny – withoutpossibility of being more specific.
Practice exercise PE2 Answer page 119If δ is a positive value which is really tiny (even tinier than that!),

(1) what can you say about the size of δ2, 2 · δ and −δ?
(2) what can you say about 2 + δ and 2− δ?
(3) what can you say about 1

δ ?

Practice exercise PE3 Answer page 120If N is a positive huge number (really very huge!),
(1) what can you say about N2, 2N and −N?
(2) what can you say about N + 2 and N − 2?
(3) what can you say about 1

N ?
(4) what can you say about N

2 ?

Practice exercise PE4 Answer page 120Let a ≃ b stand for a− b is tiny, with 0 < a < b. We assume here that a is not tiny (henceneither is b)
(1) what can you say about a

a− b
?

(2) what can you say about a

b− a
?

(3) what can you say about b− a

a
?

(4) what can you say about a− b

a
?

(5) what can you say about a− b

b− a
?
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CHAPTER 1. NUMBERS AND FUNCTIONS

Functions

Assume you want to bake a cake whose recipe requires one egg. Once you have the flour, the sugar and
whatever is required in the recipe, you look up in the refrigerator and see that you have six eggs. Can you
make your cake?
Yes of course! because if you have six eggs, then you have one egg.
On the other hand, if the recipe specifies one egg, you will not use all six, because in a recipe, one means
“exactly one”.
In mathematical recipes, the terminology will be either “one” (meaning “at least one”) or “exactly one”.
(Sometimes, instead of ”exactly one”, the phrase “one and only one” will be used).
If the recipe states to add cream on “each” slice it is the same thing as stating to add cream on “every”
slice.

Definition 1 (Function) A function f is a relation between two sets (input set A andoutput set B) such that for each element x of the input set there is one and only onecorresponding element f(x) of the output set.Notation:
f : A → B

x 7→ f(x)

The input set is also called the domain and the output set is called the range or codomain.
Practice exercise PE5 Answer page 120Describe relations between two sets which are not functions.

The function is usually given by a mathematical rule. The rule can be given by a collectionof rules, provided they respect that for any given input, exactly one of the rules apply.When nothing is specified, the domain of the function is assumed to be the biggest possibleinput set for the specifying rule. (For values not in the domain, for some reason, the output isnot defined, such as division by zero or square roots of negative numbers.)
Real functions

Functions whose domains are sets of real numbers and whose ranges are sets of real numbersare said to be real functions. In all this study of analysis, functions are assumed to be realfunctions so it will not be specified.
For graphical representations, the input set is usually established as a horizontal line in x(or t) and the output set is established as a vertical line in y. The positive directions are to theright and upwards.
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CHAPTER 1. NUMBERS AND FUNCTIONS

Exercise 1Using any available method, sketch the graphs of the following functions.(The indication of R as output simply means that you must determine the biggest and smallestvalues to make your drawing and that there is no other restriction on the output.)
(1)

f : [−3, 3] → R
x 7→ 2x+ 1

(2)
f : [−3, 5] → R

x 7→ −2x− 3

(3)
f : [−3, 3] → R

x 7→ x2

(4)
f : [−2, 2] → R

x 7→ x3

(5)
f : [−4, 4] → R

x 7→ |x|

(6)
f : [−4, 4] → R

x 7→

{
1 if x ≥ 0

−1 if x < 0

Comment This last function is defined by parts and could seem to be the concatenation of
two functions. One must understand that it is a single function since for any x, exactly one of
the rules apply. (Nothing in the definition of a function stipulates that the same rule must apply
to all x. So the general rule here is divided into two subrules.)

Exercise 2If f(x) = x2 + 1 and g(x) = x + 2 are two rules for functions, give the following results insimple form.
(1) f(1)(2) f(−2)(3) f(3 + a)(4) f(3x)

(5) 3f(x)

(6) f(g(2))

(7) g(f(2))

13



CHAPTER 1. NUMBERS AND FUNCTIONS

With the intuitive concept of tiny:

Practice exercise PE6 Answer page 121Let f : x 7→ x2, and let δ be tiny and positive.
(1) Draw the result of a zoom centred on the point ⟨1, 1⟩ of f so that δ becomes visible.Show, on the drawing, the values 1 and f(1); 1 + δ and f(1 + δ); 1− δ and f(1− δ)What does the curve look like?
(2) Similar question for a zoom centred on ⟨−1, 1⟩

Practice exercise PE7 Answer page 122Let g : x 7→ |x| , and let δ be tinyDraw the result of a zoom centred on ⟨0, 0⟩ of g so that δ becomes visible.Show, on the drawing, the values 0 and g(0); δ and g(δ); −δ and g(−δ).
Practice exercise PE8 Answer page 123Draw the following function for x between −2δ and 2δ but with a vertical scale between −1and 1. This means a different scale for the vertical axis than for the horizontal axis.

k : x 7→

{
−1 if x ≤ 0

1 if x > 0

Summary of this chapter

N,Z,Q,R are sets of numbers: natural numbers, integers, rational numbers, real numbers. We
will concentrate on functions from real numbers to real numbers.

Closure of an operation in a number set means that if the inputs are two numbers from that
set, the result is a number in that same set.

Intuitively: tiny numbers reproduce the same structure at a smaller level of observation.
When we zoom in on a line, we gain information (we can distinguish numbers which seemed
blurred into one).

When zooming on a curve, it may seem to become indistinguishable from a straight line. In
other cases, a pointed vertex may appear and remain pointed after zooming in, or a step may
remain a step.

If the zoom is indistinguishable from a straight line, the slope of that line can be determined.

14
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infinity
The ancient Greeks considered two sorts of ”infinities”.

• A potential infinity: counting never stops. In symbols,
∀x ∃y y > x

which could be read: ”for any value I can give, you can find one which is greater”That numbers in N,Z,Q or R satisfy this property is beyond doubt.
• An actual infinity: there is a quantity which is bigger than any number you can count. Insymbols

∃y ∀x y > xIt follows that if the domain of x real numbers, then y itself cannot be a real number sinceit would have to be greater than itself!It may be harder to conceive but this infinity is the one that measures the size of N,Z,Qor R, it is the measure of the number of pints on a line.
In all cases, infinities are not numbers in the usual sense, which is why the symbol ”∞” maynot be used in operations..When one considers that there are infinitely many real numbers in the interval [0, 1], it is anactual infinity.
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Chapter 2

Principles of proximity: formalisation

There are infinitely many (real) numbers in the interval [0, 1], but then some of them must bereally very close to each other.
Some are so close that without a microscope, their difference is not observable.
Assume a is observable.If b is so close to a that the difference cannot be observed, we consider that b is not observable(in the sense that it cannot be individually distinguished from a.)

a

b

When we zoom in and the difference between a and b becomes observable, a remains ob-servable.
a b

The (overall) observability is now that of b, and if we write δ = b − a then δ is so small itcould not be observed before the zoom.
a b

δ

So far, you probably never thought of using a microscope to look at numbers, so the numbersyou already know are always observable (with or without microscope).
(1) If we do not need a microscope to see a number, we say that it is always observable. Tinynumbers are not as observable. But we can zoom in to see them.(2) Also, if we can see the number 2, for example, (not the interval from zero to two, just thepoint which has value two) when we zoom in, we can distinguish 2 from 2+δ, but (important

fact!) we can still see 2. Observability does not get lost when zooming in; observabilitydoes not get lost when tiny numbers are also made observable.

17
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(3) Now imagine that we have zoomed in, so we can see 2+δ; it is possible to imagine numbersyet tinier, which would need a much more powerful microscope to be distinguished. Thismeans that when we specify that a number is tiny, we must be able to specify “comparedto which numbers”, that is to say, according to our metaphor, we need to specify whatpower is needed from the microscope to observe this number. We will refer to this as the”observability”(4) If two numbers are observable relatively to a given value (they are as observable as thatvalue) then their product, difference, quotient and results of other operations are alsoobservable relatively to that given value. This is closure of observability in a similarsense as mentioned on page 5 for addition and multiplication of natural numbers.Tiny numbers do not appear in a result if they have not been in the input.
Since “tiny” is a familiar word which can have ambiguous meanings, we choose another word:

ultrasmall.
Formalisation
Consider a problem to be solved, such as calculating the slope of a function f at a given point
a or calculating the area under a curve between two points b and c, the question is about f and
a, or about f, b and c. Convenient temporary variables may occur but the problem is not aboutthese.

Observability

(1) Numbers defined without reference to observability are always observable.
(2) There are numbers which are not always observable.
(3) Observability is determined by the numbers and parameters the problem is about.
(4) The result of operations between observable numbers are observable. This is

closure of observability, and will be referred to simply as ”closure”.
Numbers defined without reference to observability are always observable.
This means that all the numbers you have encountered so far, such as

1 0 1000000 − 5
√
2 π

are always observable. Other numbers such as ultrasmall numbers are less observable.

If a is always observable and b is not always observable, then when we zoom in to observe
b, a remains observable. So a+ b is as observable as b.”Observable” always refers to a predetermined situation. No number has any form of ob-servability alone, except maybe to say that it is as observable as itself.

Definition 2 (Ultrasmall) If a non zero number is smaller in absolute value than anynon zero positive observable number, it is ultrasmall.

18
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UltrasmallWhatever the observability, there are numbers which are ultrasmall.

Definition 3 (Ultralarge) A real number is ultralarge if it is larger in absolute valuethan any positive observable number.
Ultralarge numbers can be positive or negative. If we want to specify, we may use theterminology ”ultralarge positive” for instance. If we indicate simply ”ultralarge” it is similar towhen we specify ”ultrasmall” which can be either positive or negative (but obviously not both atthe same time...)

With respect to a given observabilityultrasmall numbers are somewhere here

0

/ / / /

With respect to a given observabilityultralarge numbers are somewhere over there
/ ///

0
△! Ultralarge numbers are not ”infinity”, they are real (huge) numbers and as such canbe used in operations.
Definition 4 (Ultraclose) Let a, b be real numbers. We say that a is ultraclose to b,written

a ≃ bif b− a is ultrasmall or if a = b.
Since there is a reference to ultraproximity, it is understood that it refers to some observ-ability.In the example above, there is an ultrasmall value δ such that b = a+ δ ≃ a
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CHAPTER 2. PRINCIPLES OF PROXIMITY: FORMALISATION

In particular, δ ≃ 0 if δ is ultrasmall or zero.
△! It is important for mathematical practice to be able to distinguish between being very

close to zero but not equal to zero or being very close to zero and possibly equal to zero. Seeproperty 3, page 23, property 4, page 23 and property 2, page 20 for first examples of thisdistinction.
With respect to a given observability
b = a+ δ (with δ ultrasmall positive)is somewhere here

a
Relative to observability:The concepts of observability, ultrasmall, ultralarge and ultraclose are always relative to allthe values and parameters of the situation, hence it is not necessary to specify them explicitly.

The following property is fundamental, because everything that follows is a consequence ofit. It is extremely important to fully understand the claim.
Property 1 Let ε be ultrasmall and let a be observable and not zero. Then

a · ε is ultrasmall
ProofBy contradiction. Assume that a · ε is not ultrasmall: written a · ε ̸≃ 0.If this were smaller, in absolute value, than all non zero positive observable numbers, itwould be ultrasmall, hence since it is assumed not ultrasmall, there is an observable numberbetween a · ε and zero. And since the definition mentions absolute values, we have that there isan observable strictly positive b such that |a ·ε| ≥ b > 0. But |a ·ε| = |a| · |ε|. So |a| · |ε| > b > 0.Then |ε| ≥ b

|a| > 0. By closure b
|a| is observable. This contradicts that ε is ultrasmall.

Property 2 Let ε and δ be ultrasmall and let a be observable and not zero. Then
(1) ε+ δ ≃ 0

(2) ε · δ is ultrasmall
(3) a

ε
is ultralarge
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Note the distinction between ultrasmall and ultraclose to zero: if a number is ultraclose tozero, it either can be ultrasmall or zero. For instance, in the first item, if ε = −δ , we have
ε+ δ = 0.

Proof

(1) ε+ δ ≃ 0

0 ≤ |ε + δ| ≤ 2 · max{|ε|, |δ|} which is two times an ultrasmall, which is ultrasmall byproperty 1.
(2) ε · δ is ultrasmallObvious, but if necessary: 0 < |δ| < 1 so 0 < |ε · δ| < |ε|

(3) If a ̸= 0 Then: a

ε
is ultralargeAgain by contradiction: assume it is not ultralarge, then there is an observable b > 0 suchthat |aε | = |a|

|ε| < b ⇒ |a| < |b| · |ε| ≃ 0, which contradicts that a is observable.

The following theorem is very important, since it allows to perform algebraic calculationswhich involve the concept of ultracloseness.
Theorem 1 (Ultracomputation)
Let a and b be observable with a ≃ x and b ≃ y,

(1) a+ b ≃ x+ y

(2) a− b ≃ x− y

(3) a · b ≃ x · y

(4) If also b ̸= 0, then a

b
≃ x

y

Proof

(1) – (2) a± b ≃ x± yWrite x = a + ε and y = b + δ (which implies that ε and δ are ultrasmall). Then
x + y = a + ε + b + δ and since ε + δ ≃ 0 by property 2, page 20 (2) we have theconclusion.

(3) a · b ≃ x · y

x · y = (a+ ε) · (b+ δ) = a · b+ a · δ + b · ε+ ε · δ ≃ a · b by property 2, page 20 (2) and2, page 20 (1).
(4) If also b ̸= 0, a

b
≃ x

y
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For this, it is enough to show:
If b is observable and b ̸= 0 and if b ≃ y then 1

b
≃ 1

yand use item 3 to conclude.Writing y = b+ δ and
1

y
=

1

b+ δ
=

1

b
+ h

We need to show that h ≃ 0This leads to b = (1 + bh)(b+ δ︸ ︷︷ ︸
≃b

) ≃ (1 + bh) · b. Therefore we have b ≃ b · (1 + bh); divide
eacd side by b 1 ≃ 1 + bh, so bh ≃ 0 and since b is observable and not zero, we have h ≃ 0

Practice exercise PE9 Answer page 123
(1) Give an example of x and y such that x ≃ y but x2 ̸≃ y2(2) Give an example of x and y such that x ≃ y but 1

x ̸≃ 1
y

Practice exercise PE10 Answer page 123Let ε, δ be positive ultrasmall and H,K positive ultralarge numbers.Determine whether the given expression yields an ultrasmall number, an ultralarge numberor a number in between.
(1) 1 +

1

ε

(2) √
δ

δ

(3) √
H + 1−

√
H − 1

(4) H +K

H ·K

(5) 5 + ε

7 + δ
− 5

7

(6) √
1 + ε− 2√
1 + δ

Practice exercise PE11 Answer page 124Find ultrasmall ε and δ (or the relation between them) such that ε

δ
is:

(1) not ultralarge and not ultrasmall,(2) ultralarge, (3) ultrasmall.

△! The previous exercise shows that if no relation is known between ultrasmall numbers
ε and δ, their quotient can be of any possible magnitude.

22



CHAPTER 2. PRINCIPLES OF PROXIMITY: FORMALISATION

SymbolsThere are no specific symbols for ultrasmall or ultralarge. But N is ultralarge if 1
N ≃ 0 and εis ultrasmall if ε ≃ 0 and ε ̸= 0.The only new symbol we introduce is ”≃” which must be distinguished from ≈ which is usedfor (observable) approximations, such as π ≈ 3.14.Thus ε ≃ 0 reads ”epsilon is ultraclose to zero” whereas π ≈ 3.14 read ”pi is approximately3 point one four.”

ClosureOn page 18, closure is given as:
The result of operations between observable numbers is observable.It is in fact a consequence of a more general version.
Closure (general form)If there is a number satisfying a given property, then there is an observable numbersatisfying that property.

If we use classical operations which do not refer to observability, such as addition, subtraction,multiplication, divisions, roots, powers, exponentials, etc., then if they have a result, they havean observable result (by closure). Since this result is unique, it is observable; hence, the formgiven on page 18 is a consequence of the general form.
Let f : x 7→ 3x+ 2. If x is always observable, then f(x) is always observable – by closure.
Property 3 If a and b are observable and a ≃ b, then a = b.

ProofIf a ≃ b then a− b ≃ 0; which means that a− b is ultrasmall or zero.By closure (Observability: item 4, page 18), the value is observable, hence cannot be ultra-small.
If a ≃ b then a and b are said to be neighbours. If a is a neighbour of b and is observablethen a is an observable neighbour of b..
Observable neighbourAny number which is not ultralarge has a real number as observable neighbour.

Property 4 If x has an observable neighbour, then it is unique.
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This method of proof is a classical method in mathematics. To prove that there is only onevalue having a given property, assume that there are two then prove that they are equal.
Note that it is not always the case. An equation such as (x−2)(x+3) = 0 has two solutions(2 and −3).

Proof

Assume a and b are observable neighbours of x, then x = a + ε but also x = b + δ so
a− b = δ − ε ≃ 0 (by theorem 1 page 21) therefore a ≃ b and by property 3, page 23, a = b

If a is observable and δ ≃ 0 then a+ δ ≃ a and a is the observable neighbour of a+ δ. Whatthe principle above states is that it works both ways: any number x which is not ultralarge canbe written in the form x = a + δ where a is observable and δ is ultrasmall, (or 0 in the casewhere x is observable).

With the concept of observable neighbour the proof of the fourth item of theorem 1, page 21can be done in the following way:
Claim:

If b is observable and b ̸= 0 and if b ≃ y then 1

b
≃ 1

y

Proof

b is observable and not zero, hence for y ≃ b, y is not ultrasmall nor ultralarge. Therefore 1
yis not ultralarge nor ultrasmall, hence it has an observable neighbour c ≃ 1

y which is not zero.Write c+ ε = 1
y ⇒ cy + εy = 1. εy ≃ 0 by property 2, page 20.

Hence cy ≃ 1 and then 1
c ≃ y ≃ b. But by closure, 1

c is observable, so 1
c = b. So 1

y ≃ 1
b
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Sets
A great deal of mathematisc is performed by operating on sets of real numbers (per
example: a function has an input set and an output set).
Sets can be given by an enumeration: The solution set for the equation (x−2)(x−3) =
0 is {2, 3}
or by a property, in the form

{x ∈ R | P (x)}

which reads ”all x which are real numbers and satisfying property P ” written in math-
ematical symbols.
for instance

{n ∈ N | ∃k ∈ N, n = 2k}

is the set of even numbers.

The only new symbol introduced in this course is ”≃” which refers to the observability
of the property and of the variable.

Properties defining sets thus either do not refer to observability or refer to it by the
”≃” symbol.

The same applies to the property mentioned in Closure, page 23.

Properties using ultraclosneess can be used to divide an interval into an ultralarge
number of ultrasmall pieces (see page 37, theorem 2)
The set {x ∈ R | x ≃ 0} may seem to collect all ultrasmall numbers, but x determines
the observability since it is a statement about x so it is observable, and if an observable
number is ultraclose to an observable number, they are in fact equal (property 3, page
23). So this set is in simply {0}.
Note that it is not possible to define a collection of all ultrasmall numbers using a
property as defined above. We never need to collect them.

Summary of this chapter
The numbers which can be defined without referring to observability are always observable, or
standard.

There are non observable numbers and they have a certain fuzziness: an ultrasmall number
cannot be written out using the usual ten digits – or would require using an ultralarge number
of zeroes after the decimal point before the first non zero digit.

Closure: The result of operations between observable numbers is observable.
Ultrasmall, ultralarge and ultraclose always refer to an observability.
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Chapter 3

Asymptotes

Exercise 3Consider the real function f : x 7→ 1
x

x

y

(1) What is the domain of this function?
(2) What happens to the curve close to the vertical axis i.e., for values of very close to 0?Consider x ultraclose to 0.
(3) What happens to the curve close to the horizontal axis? i.e., for very large values of x?Consider ultralarge values of x (positive or negative).
(4) Draw this function for a horizontal domain of [−100, 100] and a vertical range of [−100, 100]

Informally: For a given function f , a straight line is an asymptote of the function f if it isultraclose to the graph of the function when either
• x is ultralarge (horizontal or oblique asymptote)
• y (or f(x)) is ultralarge (vertical asymptote)
In the following, we will use the symbol a− to indicate that we choose numbers less than a,and the symbol a+ to indicate that we choose numbers greater than a.
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Definition 5 A real function f has a vertical asymptote at x = a if f(x) is positiveultralarge or negative ultralarge for x ≃ a.If it is the case for x greater than a, we write
x ≃ a+ ⇒ f(x) is ultralargeIf it is the case for x less than a, we write
x ≃ a− ⇒ f(x) is ultralargeIf it is the case on both sides of a, we write
x ≃ a ⇒ f(x) is ultralarge

Recall that an ultralarge – if nothing is specified – can be either positive or negative.
Definition 6 (dx) Notation: when an ultrasmall value in the direction of x is used,we will often use dx. It is not the product of two values d and x, it is a single objectwith a two letter name. It is not zero and can be positive or negative.

Using the notion of dx, ”x ≃ a+ ⇒ f(x) is ultralarge” can be rewritten: ”for dx > 0 f(a+dx)is ultralarge.” and ”x ≃ a− ⇒ f(x) is ultralarge” can be rewritten:”for dx < 0 f(a + dx) isultralarge.” or ”for dx > 0 f(a− dx) is ultralarge.”
Example: The function f : x 7→ 1/x has a vertical asymptote at 0.If dx is a positive ultrasmall number then 1

dx is positive ultralarge. Hence
f(dx) =

1

dx
is ultralarge

Exercise 4Show that f : x 7→ 1
x−2 has a vertical asymptote at x = 2.Give the domain of f .

Exercise 5Show that
g : x 7→


1

x− 2
if x ̸= 2

3 if x = 2has a vertical asymptote at x = 2Give the domain of g.

28



CHAPTER 3. ASYMPTOTES

Exercise 6Show that h : x 7→ |x− 2|
x− 2

has no vertical asymptote at x = 2.Give the domain of h.
From the previous exercises we can see that there is no immediate link between the fact thatvalues are missing in a domain and the existence of vertical asymptotes.

values missing indomain vertical asymptote
f : x 7→ 1

x− 2
yes yes

g : x 7→


1

x− 2
if x ̸= 2

3 if x = 2
no yes

h : x 7→ |x− 2|
x− 2

yes no
Note that the domain of a function is observable – in the sense that it has same observability

as the function. If, on its domain, a function has an extreme value (maximum or minimum) then
this extreme value is observable (by Closure – general form, page 23), hence, the function does
not take ultralarge values. So if a function takes at least one ultralarge value on its domain
then it has no extreme value. In that sense, we say that it reaches infinite values – or extends
to infinity 1.

For example the function : x 7→ 1
x−2 takes an ultralarge value for x = 2 + dx – whether dx

is positive or negative. But one can easily see that if we use δ = dx/2 then f(2 + δ) is larger
than f(2 + dx).Hence the closer the value of x is to the value of the vertical asymptote, the larger inabsolute value the value of the function will be: there is no extreme value in the neighbourhoodof a vertical asymptote.

Definition 7 A real function f has a horizontal asymptote on the right (resp. on theleft) if there is an observable number L such that
x ultralarge positive (resp. negative) ⇒ f(x) ≃ L

Example: Consider
2x2 − 3x+ 1

x2 + 1
for ultralarge x.

This means: consider the fraction for an ultralarge value of x.
1see page 6 for a short discussion on the term infinity)
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The function f : x 7→ 2x2 − 3x+ 1

x2 + 1
is defined on R. 1, 2 and 3 are always observable. Let

x be ultralarge, whether positive or negative. Then

f(x) =
2x2 − 3x+ 1

x2 + 1
=

x2(2− 3
x + 1

x2 )

x2(1 + 1
x2 )

=
2−

≃0︷︸︸︷
3

x
+

≃0︷︸︸︷
1

x2

1 +
1

x2︸︷︷︸
≃0

≃ 2

1
= 2

hence f has a horizontal asymptote y = 2.
Exercise 7Show that f : x 7→ x

x2 + 1
has a horizontal asymptote at y = 0.Find the value of x for which f crosses its horizontal asymptote.

Exercise 8Find all asymptotes of
f : x 7→

{
1
x ifx ≤ 1

x2 ifx > 1

We now define the oblique asymptote
Definition 8 A real function f has an oblique asymptote at y = ax+ b on the right(resp. on the left) if there exist observable numbers a, b such that, if x is ultralargepositive (resp. negative), then

f(x)− (ax+ b) ≃ 0

The line y = ax+ b is the oblique asymptote of fThe existence of an oblique asymptote is a property of f hence the observability is givenby f .
This is equivalent to saying that f(x) ≃ ax+ b whenever x is ultralarge.

Example: Consider
f : x 7→ x3 + 2x2 + x− 1

x2 + 1Factoring out terms we have
f(x) =

x2(x+ 2) + x+ 2− 3

x2 + 1
=

(x+ 2)(x2 + 1)− 3

x2 + 1Therefore
f(x) = x+ 2− 3

x2 + 1
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Let x be ultralarge. We have
f(x)− (x+ 2) =

−3

x2 + 1
≃ 0

because x2 + 1 is ultralarge. Hence f has an oblique asymptote at y = x + 2, i.e., a = 1 and
b = 2

Exercise 9Find the asymptotes (if any) of
(1) f1 : x 7→ x

2x2 + 1

(2) f2 : x 7→ 2x2 + 1

x

(3) f3 : x 7→ x3 + 2

2x2 − 1

(4) f4 : x 7→ x2 + 2x+ 1

x+ 1

(5) f5 : x 7→ 3x3 + 2x2 − x+ 12

x2 + 8

For functions which are not rational functions, where the polynomial long division does notapply, we have the following:
Property 5 Let f be a real function and let a and b be observable (relative to f ).Then f has an oblique asymptote at y = ax+ b on the right (resp. on the left) if andonly if there are observable a and b such that for ultralarge positive (resp. negative)
x,

f(x)

x
≃ a and (f(x)− ax) ≃ b

Remark: If a = 0 the line y = ax+ b becomes y = b i.e., a horizontal asymptote.
ProofSince the asymptote is a property of the function, the observability is given by f but not by

x. If f has an oblique asymptote y = ax + b then for ultralarge x, we have f(x) ≃ ax + b.Divide by x:
f(x)

x
≃ a+

b

x︸︷︷︸
≃0

≃ a

. Furthermore, if we have, for ultralarge x, f(x) ≃ ax+ b, then f(x)− ax ≃ b

Conversely, assume that for ultralarge x, f(x)
x ≃ a and f(x) − ax ≃ b, then it is immediatethat for ultralarge x, f(x) ≃ ax+ b

Example: Consider f : x 7→
√
x2 + 1 defined on R. Let x be positive ultralarge. Then

f(x)

x
=

√
x2 + 1

x
=

√
x2(1 + 1/x2)

x
=

|x|

≃1︷ ︸︸ ︷√
1 + 1/x2

x
≃

{
1 it x > 0

−1 if x < 0
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Moreover:
f(x)− x =

√
x2 + 1− x =

(
√
x2 + 1− x) · (

√
x2 + 1 + x)√

x2 + 1 + x
=

1√
x2 + 1 + x

≃ 0

Hence f has an oblique asymptote at y = x on the right.On the left, the function has an oblique asymptote at y = −x

Exercise 10Find the asymptotes (if any) of
f : x 7→ x

3
2

Practice exercise PE12 Answer page 124Find all asymptotes of the following functions.
(1) f1 : x 7→ x2 − x

x− 1

(2) f2 : x 7→ 4x3 + 2x2 − 5

3x3 − 4x2(3) f3 : x 7→
√

x2 + x

(4) f4 : x 7→
√
x5 + x√
3x5 − x

(5) f7 : x 7→ x10

x10 + 1

Summary of this chapter
Ultraclose to a specific value of the independent variable x, some curves are indistinguishable
from a vertical line: this is a vertical asymptote.

It is also possible that some curves are indistinguishable from a horizontal line when x is
ultralarge. This horizontal line is called a horizontal asymptote.

Oblique asymptotes are similarly defined (for ultralarge values of x).
The equations of these asymptotes are determined by methods which involve using ultrasmall

or ultralarge numbers in computations.
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Steps

In practice exercises 6, 7 and 8, page 14, we have seen functions whose graphs look like thefollowing lines.

a) b) c)
Line a) is smooth.Line b) has a sharp bend at one value of x; it is pointed.For line(s) c) there is a step.
One way to picture these situations is to imagine a flea walking on the line on a foggyday. Situation a) provides for an easy trip. The flea can walk by dragging its legs on the line.Situation b) is a bit uncomfortable at the pointed value but it is still possible for the flea toadvance carefully by dragging its legs. Maybe the flea will stumble a bit, but will not fall offthe line. Situation c) is totally different: the flea must jump, but it cannot see how far to jump!If it drags its legs it might fall off. And these situations do not depend on which direction theflea is travelling along the line.
Curves a) and b) are continuousCurve c) is not continuous.
Informally:

A function is continuous at a given value of x = a if you can draw its graph around that
value without lifting the pencil.

Rephrasing the sentence, we can also say that a function is continuous at a given value of
x = a if it is where you would expect it to be by observing where it is just before and just after
that value.

This last sentence is formalised in the following way:
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Definition 9 (Continuity ) Let f be a real function defined around aa. We say that
f is continuous at a if

x ≃ a ⇒ f(x) ≃ f(a)

aThis means that f is defined on an interval extending on either side of a
This definition refers to an ultraproximity. The observability (see page 18) of this situationis given by a and the parameters used in defining the function f . This simply means that weadapt our telescopes/microscopes in such a manner that all these values are observable. Byclosure (see page 18) the value f(a) is also observable.Note that ”x ≃ a” does not depend on a specific value x as long as it satisfies the conditionof being ultraclose to a. It can be on the right hand side or on the left hand side of a.
x can be written a+ dx (for some ultrasmall dx), which leads to:
Let f be a real function defined around a. We say that f is continuous at a if

f(a+ dx) ≃ f(a) for any dx

Here, dx must not be specific (provided it is ultrasmall) and can be positive or negative.
Exercise 11Show that f : x 7→ x3 is continuous at a = 2

Exercise 12Show whether f : x 7→ x

x2 + 1
is continuous for all values of x.

Exercise 13

(1) Show that f : x 7→ |x| is continuous at x = 0, at x = 1, at x = −1 and at x in general.
(2) Show that g : x 7→

{
x2 if x ≥ 0

x3 if x < 0
is continuous at x = 0 and at x in general.

(3) Show that h : x 7→

{
x2 if x ≥ −1

x3 if x < −1
is not continuous at x = −1 but is continuous for all

other values of x.

Definition 10 (One-sided continuity) A function f is continuous on the right (resp.on the left) of a if f(x) ≃ f(a) whenever x ≃ a+ (resp. x ≃ a−).
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Definition 11 (Continuity on an interval)

(1) Let f be a real function defined on the open interval ]a, b[. Then f is continuous
on ]a, b[ if it is continuous at all x ∈]a, b[.

(2) Let f be a real function defined on the closed interval [a, b]. Then f is continuous
on [a, b] if it is continuous at all x ∈]a, b[ and continuous on the right at a andon the left at b.

Exercise 14Show, using the definition of continuity, whether the following functions are continuous onthe given intervals.
(1) f : x 7→ 1

3x+
√
2 on R

(2) g : x 7→ x2 − 3x− 1 on R

(3) h : x 7→ x+ 2

x− 1
on ]1,+∞[

Exercise 15Determine whether f : x 7→ x2 is continuous on its domain.
Exercise 16Determine whether f : x 7→ 1

x is continuous on its domain.
Exercise 17Prove that x 7→

√
x is continuous on its domain.

Property 6 Let f and g be two real functions continuous at a. Then
(1) f ± g is continuous at a.
(2) f · g is continuous at a.
(3) f

g
is continuous at a if g(a) ̸= 0.

ProofFor brevity, let’s call f(a) = b and g(a) = c. Let’s now introduce two dependent variables,
f(x) = u and g(x) = v.By continuity, for x ≃ a we have u ≃ b and v ≃ c. Now, by theorem 1, page 21, we have
b± c ≃ u± v b · c ≃ u · v and b

c ≃ u
v , which exactly express the definition of continuity at

a for, respectively, f ± g, f · g and f

g
.
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Clearly, if f and g are continuous on an interval I then the sum, difference, product andquotient (if g(x) ̸= 0 for all x ∈ I) are continuous on I .
When considering two functions, they could have different observability. Say f contains

a parameter h which is less observable than g. Continuity of f is observed under its own
observability and similarly for g; but for the continuity of f + g the global observability of f
and g must be used: the observability of g must be extended to contain h. Yet notice that when
we consider continuity of g at a, if g(a+ dx) ≃ g(a) all we require is that dx be ultrasmall; it
does not matter if is even smaller.

Properties do not change when the observability is extended.

Property 7 Let f and g be two real functions. If f is continuous at a and g iscontinuous at f(a), then g ◦ f is continuous at a.
Reminder: g ◦ f is the composition of f first, then g applied to the result of f . (g ◦ f)(x) isalso written g(f(x)).
Proof
x ≃ a ⇒ f(x) ≃ f(a) by continuity of f at a and g(f(x)) ≃ g(f(a)) by continuity of g at

f(a).
Similarly to what stated for property 6, page 35, if g is continuous on an interval containing

f(I) then g ◦ f is continuous on I .
Exercise 18The converse of property 6, page 35, does not necessarily hold. Find functions f and g(either by a rule or graphically) such that

(1) f + g is continuous at 1 but at least one of f or g is not continuous at 1
(2) f · g is continuous at 1 but at least one of f or g is not continuous at 1
(3) f

g
is continuous at 1 but at least one of f or g is not continuous at 1 (with g(1) ̸= 0)

Two difficult theorems

The two following theorems may seem to state something obvious when in fact they state arather subtle property of real numbers. To see this we leave for a moment the study of realfunctions and look at a function from rational numbers to rational numbers.Consider
Q → Q

f : x 7→ x2 − 2
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There are values such that f(x) < 0 (for instance, f(0) = −2) and values such that f(x) > 0(for instance, f(2) = 2), yet since the square root of two is not a rational number, there is novalue such that f(x) = 0. Nonetheless, the definition of continuity makes sense in Q so thefollowing theorem is in fact a characterisation of real numbers as much as it is a theorem aboutcontinuous functions.Take an ultralarge number of digits of √2. Because this decimal expansion is finite (thoughit contains an ultralarge number of digits) it is a rational number q (hence in Q) whose squareis ultraclose to 2 by continuity of the square root function (see exercise 17). If we were in R wewould say it is ultraclose to √
2 which is observable – by closure).If a rational number is always observable, then it remains always observable when consideredas a real number. So if q has a rational observable neighbour, it would also have √

2 as observableneighbour in R – which means that q would have two different observable neighbours in R whichhas been shown to be impossible (see page 23). So the existence of an observable neighbour isa property of real numbers. It is in fact one of their main characterisations.What the following theorem states is in fact that real numbers are sufficiently complete toprovide a solution to any equation satisfying the conditions of the theorem.
Theorem 2 (Intermediate value)
Let f be a real function continuous on [a, b] with f(a) ̸= f(b). Let d be a real number
between f(a) and f(b). Then there exists c in [a, b] such that f(c) = d.

This theorem does not tell us how to find the root or the value c such that f(c) = d. It onlyasserts the existence of such a number. For specific functions where we can calculate explicitlythe roots this theorem is not really necessary but, when proving theorems about continuousfunctions in general, it is the only way to know that there is a root.
ProofObservability is determined by f, a, b and d.We first assume that f(a) < f(b).Let N be an ultralarge integer, and dx = b−a

N (therefore dx ≃ 0) and let xk = a+ k · dx, for
k between 0 and N . We thus have x0 = a, x1 = x0 + dx, . . . , xN = b.Let xj be the first element of the partition {a, x1, x2, . . . , xN = b} such that f(xj) ≤ d and
f(xj+1) ≥ dSince a ≤ xj ≤ b, this xj it is not ultralarge, and therefore has an observable neighbour
c, so xj ≃ c and xj+1 ≃ c. By closure f(c) is observable with f(c) ≃ f(xj) < d and
f(c) ≃ f(xj+1) ≥ d, hence f(c) = d (since d is observable).If f(a) > f(b) the same proof holds with inequalities reversed. Or alternatively use g(x) =
−f(x).

Comment: Something fundamental and new is used in this proof. The real numbers and the
rational numbers are dense sets (see page 7) so it is not possible to cover an interval of such
numbers by passing from one value to the next (until a solution is found for example) since there
is no next value. This is very different from finite sets: these can be numbered with natural
numbers, which have a very important property: every nonempty set of natural numbers has a
smallest element (even if we do not know what it is). Hence by dividing the interval [a, b] into
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an ultralarge number of values, this new set can be divided into A, the xk that satisfy f(xk) ≤ d
and B, those that satisfy f(xk) > d. Note that A and B can have no element in common. (The
function my have waves and go above and below the value d several times, we only need to find
one answer to prove the theorem.) B has a smallest element which may not necessarily be the
exact solution but the proof shows that its observable neighbour is the required solution.

This was the first use of a method frequently used in analysis: using ultrasmall values we
find an approximation to the solution of the problem and check whether the observable neighbour
is the answer.

Exercise 19Give an example of a function f discontinuous on [a, b] with f(a) < 0 and f(b) > 0 suchthat there is no c in the interval [a, b] such that f(c) = 0.Give an example of another function g discontinuous on [a, b] with g(a) < 0 and g(b) > 0such that there is a c in the interval [a, b] such that g(c) = 0.
Definition 12 A function has a maximum value (respectively minimum value) on aninterval I if there is a c ∈ I such that for any x ∈ I we have f(c) ≥ f(x) (respectively
f(c) ≤ f(x)).If a point is either a maximum or a minimum, it is an extremum.

We say that f has a maximum at c. The maximum point is ⟨c, f(c)⟩Note that
[0, 1[ → R
f : x 7→ x+ 1has no maximum. In fact, for every real number c ∈ [0, 1[ that we can conceive, no matter howultraclose to 1, there will always be a real number d such that c < d < 1 and, consequently,

f(d) > f(c). This is due to the fact that we define the function over an interval which is openon the right. On the other hand, function f has a minimum at x = 0, since for every x ∈ [0, 1[we have f(x) ≥ f(0) = 1

For the proof of the following theorem, the general form of closure is used.
Theorem 3 (Extreme value)
Let f be a function continuous on [a, b]
Then f has a maximum and a minimum on [a, b]

The proof of this theorem requires a step which is simpler to prove separately and refer toin the proof.
Property 8 If x ∈ [a, b] and c is observable with c ≃ x, then c ∈ [a, b]
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ProofAssume that c /∈ [a, b] and c > b. (The same proof holds for c < a by reversing inequalities).Then we would have x ≤ b < c with x ≃ c, which implies that x ≃ b and that b ≃ c. But byproperty 4 (page 23), we have b = c. Hence c is not outside the interval.
Proof(Of theorem)
Closure in the contrapositive: a statement and its negation have same parameters. If a

statement is true for all observable values of a set, then it is true for all values in that set. If it
were not, there would be a counterexample, but by closure, if there is a counterexample, there
is an observable one. So there is no counterexample.

Take an ultralarge positive integer N and partition [a, b] into N even intervals, each of length
dx = b−a

N . We thus have x0 = a, x1 = x0 + dx, . . . , xN = b.Call xM the first point of the partition such that f(xM ) ≥ f(xi) for any i between 0 and N(the maximum on the partition).Let c be the observable neighbour of xM . Because the interval is closed, c is in the interval,by property 8. By closure f(c) is observable.Let x ∈ [a, b] be observable. By closure f(x) is observable.Claim: f(x) ≤ f(c).Proof of this claim: since x ∈ [a, b], there is an i such that xi ≤ x ≤ xi+1. Then f(x) ≃
f(xi) ≤ f(xM ) ≃ f(c). So either f(xi) < f(xM ) and the conclusion is that f(x) < f(c), or
f(xi) = f(xM ) and the conclusion is that f(x) = c by uniqueness of the observable neighbour(see page 23). In both cases, f(x) is not above f(c)c.This shows that f(c) is the maximum over all observable numbers. By closure in the contra-positive form, it is the maximum over all real numbers in the interval.
Exercise 20The extreme value theorem has the hypothesis that the function is continuous on a closedinterval. These hypotheses are necessary in the proof but do not imply that a function cannothave extreme points in other situations or that a function not satisfying the hypotheses cannothave extreme points.Find examples of different functions such that

(1) f : its domain is an open interval and f has no maximum (or no minimum)
(2) g: its domain is a closed interval but g is not continuous and has no maximum.
(3) h: its domain is an open interval, h is not continuous, yet it has a maximum.

Summary of this chapter

Most functions you will encounter are continuous except maybe at a few points of their domain.
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Note that f : x 7→ 1
x is continuous (on its whole domain). The only point where it could seem

to be discontinuous is at x = 0, which is not in the domain, hence not part of the function. For a
function to be discontinuous, it must be possible to specify a point a such that there is another
point x with x ≃ a such that f(x) ̸≃ f(a). If f(a) does not exist, the proof of discontinuity is
void, hence f is continuous.

Properties 6, page 35 and 7, page 36 show that continuity can be checked by analysing the
given function as a combination of simpler functions.

The intermediate value theorem (theorem 2, page 37) is a characterisation of the real num-
bers and real functions. Its proof relies on the existence, in the real numbers, of the observable
neighbour (see page 23).

The extreme value theorem (theorem 3, page 38) makes a link between closed intervals and
continuity to prove the existence of maximum points and minimum points. It does not imply that
without these conditions a function cannot have an extremum.
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Slopes

As before (see page 28), we use dx to indicate an ultrasmall increment of the variable x. It maybe positive or negative but will never be chosen to be 0.
Exercise 21Let

f : x 7→ x2The graph of this function is a curve (a parabola). Zoom in on the point ⟨3, 9⟩. 3 and 9 arealways observable. Consider the value of the function at 3+ dx, (for dx ultrasmall as mentionedabove) and draw a straight line passing through ⟨3, 9⟩ and ⟨3 + dx, f(3 + dx)⟩.
• What is the slope of this straight line?
• What observable value is this slope ultraclose to?

Definition 13 (Derivative) Let f be a real function defined on an interval I with
a ∈ I .If there is an observable value D such that

f(a+ dx)− f(a)

dx
≃ D

not depending on ultrasmall dx then D is the derivative of f at a.
Notation: the derivative of f at a is noted f ′(a).
When f ′(a) exists,• we say that f is differentiable at a

• it is the slope of f at x = a.
• it is the observable neighbour of f(a+ dx)− f(a)

dx
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Metaphorically, finding the derivative can be described by: Zoom in. If what you see isindiscernible from a straight line, then measure the slope of that line. Extend that line and zoomout.

a

f(a)
zoom in

a

f(a)

a+ dx

f(a+ dx)

a

f(a)
zoom out

Exercise 22Using definition 13, page 41 calculate the derivative of: f : x 7→ 3x2+x− 5 at x = −2and x = 2.
Exercise 23Using definition 13 calculate the derivatives (if they exist) of the following:

(1) g : x 7→ 2x3 − 2 at x = 1 and x = 0.
(2) h : x 7→ |x| at x = 2, x = −2 and at x = 0.

Exercise 24Let f : x 7→ x3 − 3x− 2. Check that 2 is a root of f . Are there other roots?At what values of x is the derivative equal to zero? What is the value of the function at thesepoints? At what values of x do we have f ′(x) > 0 and at what values do we have f ′(x) < 0?Use all this information to make a rough sketch of the function.
Exercise 25Let f : x 7→ 2x3 − 4x2 + 2x. At what values of x is the function equal to zero? At whatvalues of x is the derivative equal to zero? What is the value of the function at these points? Atwhat values of x de we have f ′(x) > 0 and at what values do we have f ′(x) < 0?Use all this information to make a rough sketch of the function.
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Practice exercise PE13 Answer page 124Calculate the derivative of the following:
(1) f : x 7→ 5x2 − 10x at x = 2

(2) g : x 7→ 5(x− 10)2 at x = 3

(3) h : x 7→ x4 + x3 + x2 + x+ 1 at x = 1

(4) k : x 7→ 5x2 + 10 at x = 2

Practice exercise PE14 Answer page 124Consider the derivative at x (general case) of the function
f : x 7→ x2 + 3x

Show that it is differentiable for all x and that f ′(x) = 2x+ 3.
△! Note that in the computation of a derivative, the division is always between twoultrasmall numbers. They cannot be replaced by 0 since 0

0 is not defined and ultrasmallnumbers are, by definition, different from zero.

Definition 14 If a function is differentiable for all x on a given interval I , (for any
x ∈ I the value f ′(x) exists) then the derivative function is

f ′ : x 7→ f ′(x)

Practice exercise PE15 Answer page 125Using definition 13, give the derivative functions of f : x 7→ x2 and g : x 7→ x3

Exercise 26Using definition 13, give the derivative functions of the following functions:
(1) f : x 7→ 3x+ 2

(2) g : x 7→ 2x2 − x

(3) h : x 7→ 5x3 + 2x2 − x

(4) k : x 7→ 5x3 + 2x2 + 3x+ 2
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The Increment
Notation: Let dx be ultrasmall relative to f and x. We define the increment of f at a as:

∆f(a) = f(a+ dx)− f(a) or f(a+ dx) = f(a) + ∆f(a)

Comment: ∆f(a) is the variation of a function corresponding to a given variation (or
increment) of the independent variable and is therefore in fact something depending on two
variables: a and the corresponding variation of x, which can be written ∆x. If g is a growth
function, the independent variable would be time, possibly noted as t and could represent years
and ∆t could be one year. In analysis, the increment of the independent variable will always
be taken ultrasmall (and usually written dx).

Formally one could write ∆f(a,∆x). The growth function would be ∆g(t, year). In practice
this proves to be cumbersome and the reference to the increment is omitted. In physics ∆x
often refers to a finite variation whereas in analysis it refers to an ultrasmall variation of the
independent variable. The magnitude of ∆f is to be determined and could be anything from
ultrasmall to ultralarge.

Note that if f : x 7→


−1 if x < 0

0 if x = 0

1 ı́f x > 0

then ∆f(0) =

{
−1 if dx < 0

1 if dx > 0
because f is not continuous at 0.

From definition 13, upon dividing by dx, we have:
∆f(a)

dx
≃ f ′(a)

Notation: A ”≃” symbol may be replaced by a ”=” symbol by adding a value ultraclose tozero on one of the sides i.e., a ≃ b ⇒ a = b+ ε where ε ≃ 0.Hence
∆f(a)

dx
= f ′(a) + ε with ε ≃ 0

and
Property 9 (Increment equation) Let f by differentiable at a, then

∆f(a) = f ′(a) · dx+ ε · dx

or equivalently
f(a+ dx) = f(a) + f ′(a) · dx+ ε · dx
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△!

f ′(a) is NOT equal to ∆f(a)

dx
.

f ′(a) ≃ ∆f(a)

dx

The relation is one of ultraproximity.

f(a)

a
a+ dx

f(a+ dx)

∆f(a)

dx

When we zoom on smooth functions, we will notice that they tend to look almost like straightlines, hence the previous drawing would be more like the following:

f(a)

a
a+ dx

f(a+ dx)

∆f(a)

dx

Note: drawings involving ultrasmall or ultralarge values are not meant to be to scale nor bea correct representation. Their purpose is merely to help the mind.
Continuity revisited The definition of continuity (page 34) can be rewritten

f is continuous at a if ∆f(a) ≃ 0
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Property 10 If a real function f is differentiable at a then f is continuous at a.
ProofBy the increment equation.
∆f(a) = f ′(a) · dx︸ ︷︷ ︸observable×ultrasmall ≃0

+ ε · dx︸ ︷︷ ︸
≃0

Exercise 27Note that the converse does not necessarily hold. Find a function which is continuous at
x0 = 0 and not differentiable at that point.
Tangent line
Suppose f is differentiable at x0. We observe that through a microscope, the curve of the functionat x0 is indistinguishable from a straight line passing through ⟨x0, f(x0)⟩ whose slope is f ′(x0).This line is the tangent line.

f(x0)

x0

Definition 15 Let f be differentiable at x0. The tangent line T is the straight linethat satisfies T (x0) = f(x0) and T ′(x0) = f ′(x0).
Exercise 28Let f : x 7→ x2. Find the equation of the straight line tangent to f at x0 = 3.
Exercise 29Show that

Tx0 : x 7→ f ′(x0)(x− x0) + f(x0)
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Exercise 30Give the equation of the line tangent to x 7→ x3 − 3 · x2 at x0 = 2.For which values of x is this tangent horizontal?
The differential

Definition 16 Let f be a real function differentiable on an interval around a. Let dxbe ultrasmall. The differential of f at a, written df(a), is
df(a) = f ′(a) · dx

Thus
df(a)

dx
= f ′(a)or still (if we use y = f(a))

dy

dx
= y′

If f is differentiable the following holds:
∆f(a)

dx
≃ df(a)

dx
= f ′(a)

Whereas ∆f(a) is the variation of the function, the differential is the variation along thetangent line.

f(a)

a
a+ dx

f(a+ dx)
f(a) + f ′(a) · dx

df(a)∆f(a)

By the definition of increment we have: f(x+ dx) = f(x) +∆f(x) and, with the incrementequation (page 44), the following relations hold:
f(x+ dx) = f(x) + ∆f(x)

= f(x) + f ′(x) · dx+ ε · dx for ε ≃ 0

= f(x) + df(x) + ε · dx
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Note that while dx is ultrasmall, ∆y and dy are ultraclose to zero.
Critical points

Differentiability is defined on an open interval, since the derivative is defined only if the observ-able part of the fraction ∆f(x)
dx is the same for dx > 0 and dx < 0.To ensure that nothing “bad” happens at the endpoints of an interval, the following theoremsand properties specify that f is differentiable on an open interval ]a, b[ and continuous on theclosed interval [a, b].

Theorem 4 (Critical Point Theorem)
Let f be a continuous function on an interval I and suppose that c is a point in I such
that f has either a maximum or a minimum at c.
Then one of the following three things must happen:

(1) c is an endpoint of I .

(2) f ′(c) is undefined.

(3) f ′(c) = 0

(1)

c c

(2) (3)

c
ProofThe first two situations do not refer to the derivative except to indicate (in the second case)that there is none. For the third case:Assume that ⟨c, f(c)⟩ is a local maximum. (The same proof holds for a minimum.) Then

f(c) ≥ f(c+ dx) ⇒ f(c+ dx)− f(c) ≤ 0.Let dx be positive, then f ′(c) ≃ f(c+dx)−f(c)
dx ≤ 0 since, by hypothesis, f ′(c) exists.Let dx be negative, then f ′(c) ≃ f(c+dx)−f(c)
dx ≥ 0.The only observable number which is ultraclose to positive and negative values is 0.
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Exercise 31Find the derivative of f : x 7→ x3 at x = 0 to see that the converse of theorem 4 does nothold.
△! Exercises which require to prove that the converse of a theorem does not necessarilyhold are extremely important! A theorem has hypotheses (or conditions) and a conclusion. If thetheorem is in the form ”if and only if” then satisfying the hypotheses or satisfying the conclusionare equivalent (the Pythagorean theorem is an example). But in analysis, most theorems arein the form ”if the hypotheses are satisfied then the conclusion is true”. They say nothingfor the situation where the hypotheses are not satisfied, nor is it possible to deduce that thehypotheses are true if the conclusion seems correct. Consider the hypothesis ”It is raining” andthe conclusion ”the roads are wet” – and we accept as true the statement ”If is is raining, thenthe roads are wet”, then if is not raining, we cannot deduce that the roads are not wet. Maybesomebody is playing with a water hose. For the same reason, we cannot deduce anything fromthe fact that the roads are wet. But the contrapositive is true: if the roads are not wet, then itis not raining.

Theorem 5 (Rolle)
Let f be a real function continuous on [a, b] and differentiable on ]a, b[. If f(a) = f(b),
then there is a c ∈]a, b[ such that

f ′(c) = 0

Exercise 32Prove Rolle’s theorem.

Theorem 6 (Mean value)
Let f be a real function continuous on [a, b] and differentiable on ]a, b[. Then there is
a c ∈]a, b[ such that

f(b)− f(a) = f ′(c) · (b− a)

The starting point of the proof is the following: consider g which is obtained by subtractingthe line ℓ(x) through (a, f(a)) and (b, f(b)) from the function f i.e., g(x) = f(x)− ℓ(x).
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a b

f

ℓ

g
x

Exercise 33Show that g satisfies Rolle’s theorem and conclude the proof of the mean value theorem.

Property 11 Let f and g be functions and I an interval.
f ′ = g′ ⇐⇒ there is a real number C such that f = g + C

Exercise 34Prove the property 11.One direction of property 11 comes from the fact that c′ = 0. You will need theorem 6, page49) for the other direction.
Variation

Definition 17 Let f be a real function defined on an interval I .
(1) The function f is increasing on I if f(x) ≤ f(y), whenever x < y in I .
(2) The function f is decreasing on I if f(x) ≥ f(y), whenever x < y in I .

If the inequalities on f are strict (meaning: the equality cases are excluded), then we saythat the function is strictly increasing or strictly decreasing.
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Property 12 (Variation and derivative) Let f be a real function differentiable onan interval ]a, b[ and continuous on [a, b]. Then
(1) If f ′(x) ≥ 0 (> 0) whenever x ∈]a, b[ then f is (resp. strictly) increasing on [a, b].
(2) If f ′(x) ≤ 0 (< 0) whenever x ∈]a, b[ then f is (resp. strictly) decreasing on

[a, b].
(3) If f ′(x) = 0 whenever x ∈]a, b[ then f is constant on [a, b].

The converse is obvious: if f is increasing at a, then f ′(a) ≥ 0, etc.
ProofAssume f ′(x) ≥ 0 (> 0) whenever x ∈]a, b[. By the mean value theorem (theorem 6, page49) for any x and y in]a, b[ with x < y, there is a c ∈]x, y[ such that f(y)− f(x) = f ′(c)(y−x).Since y − x > 0 and f ′(c) ≥ 0 we have f(y) ≥ f(x) hence f is increasing on the interval.If f ′(x) ≤ 0 (< 0) or f ′(x) = 0 the same argument proves that the function is decreasing orconstant.

Summary of this chapter
The derivative gives a value for the slope of a function at a given point and leads to the equation
of a straight line tangent to a curve.

If a differentiable function defined on an interval has a maximum or a minimum at a given
interior point, then its derivative is zero at that point. The converse is not true: a derivative
can be zero without that point being an extreme value. Moreover, if the function has a maximum
or a minimum at an endpoint of its interval, the derivative of the function at that point is not
necessarily zero.

The mean value theorem (theorem 6, page 49) has important consequences. In particular the
fact that if f ′(x) = 0 on a whole interval, the function is constant (property 12, page 51). This
is not as obvious as it could seem. The derivative is zero if ∆f(x)

dx ≃ 0: note that it is not an
equal sign. The fact that the derivative is zero everywhere on the interval is a consequence of
the mean value theorem.

If two functions have the same derivative (property 11), they are the same functions up to
an additive constant. (If the function is the position of an object, the derivative represents its
velocity. If two objects move with same velocity, the distance between them remains constant.)

All this information about the derivative is put in property 12 and leads to the possibility of
visualising the curve: when the derivative is positive the function is going upwards (from left to
right), when it is negative, it goes down, and if it is zero, the curve is horizontal (possibly just
at one point).

The differential df(x) = f ′(x) · dx or dy = y′ · dx is an ultrasmall value: it represents the
variation along the tangent line.
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Chapter 6

Differentiation rules

We have seen so far that definition 13 (41) allows us to calculate the derivatives of functions;however, to calculate the derivatives of complex functions, we might benefit from more powerfultools. Often, evaluating the derivatives of complex functions is better done by breaking downthese functions into simpler ones, of which we can easier calculate the derivatives, and thencompose the results.Since observable numbers remain observable if we zoom further in, a property is not changedif the observability is extended. So when considering combinations of functions, the observabilityis extended if necessary to contain all parameters of both functions (see page 36).According to definition 13, for every proof of the properties in this chapter, we will evaluatethe increment of the complete function divided by the ultrasmall increment dx, and we will checkwhat observable value this is ultraclose to.
Product of functions

Using dependent variables it is usual to write f(x) = y but when two functions are involved,we use f(x) = u and g(x) = v, (then ∆f(x) = ∆u and ∆g(x) = ∆v).

Property 13 Let f(x) and g(x) be two differentiable functions, then the product isdifferentiable and
(f(x) · g(x))′ = f ′(x) · g(x) + f(x) · g′(x)

ProofLet’s call f(x) = u and g(x) = v. Now, consider the product u · v and its variation: theproduct u · v can be interpreted as the area of a rectangle with sides u and v.and when x varies to x+ dx, u varies to u+∆u and v varies to v +∆v.
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v

u ∆u

∆v

v ·∆u

u ·∆v ∆v ·∆u

Then u · v varies to v · u+ v ·∆u+∆v · u+∆v ·∆u hence
∆(u · v) = v ·∆u+∆v · u+∆v ·∆u

Divide the expression above by dx

∆(u · v)
dx

= v · ∆u

dx︸︷︷︸
≃u′

+
∆v

dx︸︷︷︸
≃v′

·u+
∆v

dx︸︷︷︸
≃v′

·∆u

The last term is ultraclose to zero: recall that ∆u ≃ 0 because u is continuous, so v′∆u ≃ 0by rule 2, page 20 (1).
Exercise 35Using the derivatives of f : x 7→ x2 and g : x 7→ x3, calculate the derivative of h : x 7→ x5

(= x2 · x3).
Exercise 36Let c be a constant, considered as a constant function. What is ∆c?Complete the proof of the following:

Property 14 Let c be a constant. Then
c′ = 0

Property 15 For n ∈ N If f : x 7→ xn then f ′(x) = nxn−1
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ProofThis property is for all values of n,It is of course impossible to prove all cases. We prove by induction.If
(1) The property holds for n = 0,
(2) Assuming the property holds for n greater than 0, we can prove that italso holds for n+ 1,

then the property holds for all n ∈ N.A proof that this method of proof is valid can be given by contradiction.Assume (1) and (2) have been checked for a given property P , but that there is a value msuch that the property does not hold. Then m ≥ 1 since that the property has been proven for
n = 0. Since we are in the natural numbers, every set has a smallest number, so the set ofvalues for which the property does not hold has a smallest value, call it p.Then the property holds for p− 1 ≥ 0. But since (2) has been proven, we can show that theproperty holds for p− 1+ 1 so the property holds for p: a contradiction. Therefore there can beno number for which the property does not hold.

Back to the proof of property 15:We have already noticed that the property holds for n = 1, n = 2 and n = 3, i.e. (x2)′ = 2x,
(x3)′ = 3x2 and x′ = 1.Assume it holds for n, then

(xn+1)′ = (xn · x)′ = (xn)′ · x+ xn · x′ = n · xn−1x+ xn = (n+ 1)xnso the property holds for (n+ 1) therefore it holds for all n ∈ N.
Property 16 Let c be a constant and f(x) a differentiable function. Then c · f(x) isdifferentiable and

(c · f(x))′ = c · f ′(x)

Proof

Let’s call f(x) = u and consider the product c · u for constant c and differentiable function
u. When x varies to x+ dx, u varies to u+∆u and c remains constant.

c

u ∆u

c ·∆u
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The product c · u varies from c · u to c · u+ c ·∆u, hence
∆(c · u) = c ·∆u

Divide the expression above by dx

c ·∆u

dx
= c · ∆u

dx
≃ c · u′

Sum and difference

Property 17 Let f(x) and g(x) be differentiable functions. Then
(f(x) + g(x))′ = f ′(x) + g′(x)

ProofAgain, let’s call f(x) = u, g(x) = v and consider the sum u + v. When x varies to x + dx,
u varies to u+∆u and v varies to v +∆v

u ∆u v ∆v

Then
∆(u+ v) = ∆u+∆v

Divide the expression
∆u+∆v

dx
≃ u′ + v′

Exercise 37Find the derivatives of h : x 7→ x3 + x2 and k : x 7→ 5x3 − 7x2

Composition

Property 18 (Chain Rule)Let f and g be real functions such that g is differentiable at x and f is differentiableat g(x). The the function f ◦ g is differentiable at x and
(f ◦ g)′(a) = f ′(g(a)) · g′(a)
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ProofLet’s call f(y) = u, g(x) = v. If u′ exists, we have (as usual)
u′ ≃ ∆u

dxwhere u depends on vIf ∆v ̸= 0, then
u′ ≃ ∆u

dx
=

∆u

∆v
· ∆v

dx
≃ u′ · v′and the property holds.Otherwise, if ∆v = 0, then v′ = 0. Furthermore from x to x+dx, v does not change its valuesince ∆v = 0 hence u does not change its value so ∆u = 0. Hence (u ◦ v)′ = 0 = u′ · v′︸︷︷︸

=0Using the concept of differential (page 47), the chain rule can be shown (for y as function of
x and z as function of y):

dz = z′ · dy = z′ · y′ · dxhence
dz

dx
= z′ · y′Note that this does not require to separate the case when dy = 0.

Exercise 38Give the derivatives of the following functions and find the zeroes of these derivatives:
(1) f : x 7→ (x3 + 2x)4(2) g : x 7→ (5x3 + 3x2)13

Exercise 39Use (
√
x)2 = x and property 18, page 56 to find the derivative of y =

√
x (for x > 0) –assuming it exists.

Exercise 40Give the derivatives of the following functions:
(1) f : x 7→ (

√
x+ 1)4

(2) g : x 7→
√
5x3 + 3x2(3) h : x 7→

√
x2

(4) i(x) =
√
3x3 + 2x+ 1

(5) j(x) = (x2 + 3)5

(6) k(x) = (ax+ b)n

(7) l(x) =
√

x3 + 1

Exercise 41Use the definition of the derivative to find f ′(x) for f : x 7→ 1
x
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Exercise 42Use the previous exercise and the chain rule to find the derivative of 1
f(x) , assuming that

f(x) ̸= 0 and that f ′(x) exists.
Quotient

Exercise 43Write u
v = u · 1

v and use exercises 42 and the chain rule to prove the following:
Property 19 Let f and g be two real functions differentiable at a and g(a) ̸= 0. Thenthe function f

g
is differentiable at a and

(
f

g

)′
(a) =

f ′(a) · g(a)− f(a) · g′(a)
g2(a)

Exercise 44Show that for m ∈ Z
(xm)′ = m · xm−1

Exercise 45Find the slope of x 7→ x2 − 2x

x3 + x2
at x = 1.

Exercise 46Find the derivative of
f : x 7→ x

x2 + 1

Practice exercise PE16 Answer page 125Differentiate the following for general x:
(1) f : x 7→ 5x4 + x3 − 2x2 + 25(2) g : x 7→ 5

√
3 x2 − 100

(3) h : x 7→ x2 + 2x− 1

x3 − 5

(4) j : x 7→ 5x4 +
1

3x2 − 2x+ π

(5) k : x 7→ (5x+ 2) · 1

5x+ 2

(6) l : x 7→ 1

x
+

1

x2
+

1

x3
+

1

x4

(7) m : x 7→ 1 + x

1 + 1+x
x2
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Practice exercise PE17 Answer page 125Sketch the curve of y = −(x− 3)(x+ 1)(x− 1)

Practice exercise PE18 Answer page 126Let y =
10x

x2 + 1
. Sketch the curve and give the equation of the line tangent to the curve at

x = 3.
Practice exercise PE19 Answer page 126Consider each of the following as a function f , find the corresponding derivative function f ′.

(1) x3 + x2 + 2x− 4(2) −x3 + 2x2 − 2x+ 1(3) 1
3x

3 − 5
2x

2 + 6x(4) 1
3(x− 2)3

(5) x2

x+ 2

(6) x− 1 +
9

x+ 1

(7) 4x2 + 4x+ 5

4x+ 2

(8) −x2 − 2x− 1

x+ 3

(9) |x− 2|

(10) x2

|x|+ 2

(11) x+ 2− 1

x+ 1

(12) |x3 − 6x2 + 11x− 6|

Exercise 47Find the derivative of the following functions. Since they are piecewise defined, the answerwill be in 3 parts – one special point is the meeting point for both rules.
(1)

f : x 7→

{
x2 if x ≥ 1

2x− 1 if x < 1

(2)
g : x 7→

{
x2 if x > 2

x+ 2 if x ≤ 2

(3)
h : x 7→

{
x2 if x ≥ 3

2x if x < 3

59



CHAPTER 6. DIFFERENTIATION RULES

Exercise 48Using that (x 1
n )n = x, find the derivative of y = x

1
nThis shows that the rule in property 15 holds also for rational n1.

Exercise 49Use | x |=
√
x2 to find an expression for the derivative of | x |

Practice exercise PE20 Answer page 127Let
f : x 7→ 1

3
x3 +

7

2
x2 + 12x

Calculate its derivative, find where the derivative is positive, where it is negative and whereit is equal to zero.Calculate the roots and intercept (if any) of f and sketch the graph of f .

Practice exercise PE21 Answer page 127
(1) f : x 7→ 2x2 − 4x+ 5

(2) g : x 7→ x3 + 2x

7

For f , give the equation the line tangent to the curve at x = −2For g, give the equation the line tangent to the curve at x = 1

Derivative of the inverse function

Let f be a function. Recall that the inverse function of f , if it exists, is written f−1 and is suchthat f−1(f(x)) = x.
△! f−1(x) is not 1

f(x)

A function has an inverse if the image of its curve by a symmetry through the y = x axis isthe curve of a function.
1For now, we assume without proof, that the nth root is differentiable.
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x

y

x+ dx

y +∆y

dx

∆y

x

y

x+ dx

y +∆y

dx

∆y

A continuous function has an inverse if and only if it is everywhere strictly increasing orstrictly decreasing. If it had a maximum, there would be two points a and b with f(a) = f(b) = yand the inverse would have f−1(y) = a and b, which contradicts the definition of a function. Ahorizontal segment would have a vertical segment as symmetry: also not the graph of a function.Because if f(x) = y is differentiable then it is continuous i.e., ∆y ≃ 0. Looking at thesymmetric graph one can see that if y is the independent variable with an increment ∆y ≃ 0,the corresponding variation of x (as dependent variable!) must be ultrasmall (because thefunction is strictly increasing/decreasing.The slope of the tangent of the inverse is the reciprocal of the slope of the original tangent:
dx

∆y
=

1
∆y

dx

≃ 1

y′

Note that writing dy instead of ∆y leads to the same result but is not absolutely correct:the variation of the functions should be used rather than the variation along their tangent lines.The derivative is the observable neighbour of the ratio vertical variationhorizontal variation =
∆y

dx
≃ dy

dx
.

Switching variables leads to dx

∆y
=

dx

y′dx+ εdx
=

1

y′ + ε
≃ 1

y′
.

Property 20 (Derivative of the Inverse)Let f be a function defined on an interval I with image J . If f is differentiable on
I , has an inverse f−1, and f ′(a) ̸= 0 for a ∈ I , then this inverse is differentiable at
b = f(a) ∈ J and

∆f−1(b)

∆y
=

1

f ′(a)

In general form:
∆f−1(y)

∆y
=

1

f ′(x)
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Summary of this chapter
• (xm)′ = mxm−1, for m ∈ Q.
• c′ = 0

• (c · f)′ = c · f ′

• (f + g)′ = f ′ + g′

• (f · g)′ = f ′ · g + f · g′

• (
f

g

)′
=

f ′ · g − f · g′

g2• (f ◦ g)′ = f ′ · g′

• (f−1)′ = 1
f ′
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Chapter 7

Curve sketching – basic functions

To sketch the curve of a function on a Cartesian plane involves problem-solving abilities. Thetask can be carried out by taking, in sequence, the following steps:
(1) Find the domain.
(2) Find the roots and the intercept (if any).
(3) Find the asymptotes (if any).
(4) Find the derivative (if any).
(5) Find the roots of the derivative (if any).
(6) Determine the maximum and minimum values.
(7) Use this information to choose a convenient scale.
(8) Sketch the function.

The roots are also called the x-intercepts. There can be none, one, or more.
The intercept (f(0)) is also called the y-intercept, there can be none if the function is not

defined at zero, or exactly one.

Example: Let
f : x 7→ x

x2 + 1

(1) The denominator is never zero (x2 + 1 ≥ 1) so the function’s domain is R

(2) f(0) = 0 (x-intercept and y-intercept)
(3) The denominator if the function x2 + 1 ≥ 1 hence x/(x2 + 1) ≤ x. Let a be observable,then f(a) ≤ a hence is not ultralarge, The function does not have a vertical asymptote.For the horizontal asymptote, see exercise 7, page 30. Divide numerator and denominator

by x, and consider x to be ultralarge
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x

x2 + 1
=

1

x+
1

x︸︷︷︸
≃0

≃ 1

x
≃ 0

There is a horizontal asymptote at y = 0 (on the right and on the left).(4)
f ′(x) =

(x2 + 1)− x · 2x
(x2 + 1)2

=
1− x2

(x2 + 1)2

(5) f ′(x) = 0 ⇒ x ∈ {−1,+1}(6)
−∞ −1 0 1 ∞

f ≃ 0 − − − 0 + + + ≃ 0
f ′ − 0 + + + 0 −
f ↘ min ↗ ↗ ↗ max ↘

There is a minimum at x = −1 and a maximum at x = 1.(7) A convenient scale for the drawing can be chosen by calculating:
f(−1) = −1

(−1)2+1
= −1

2

f(1) = 1
2

(8)

x

y

−1

1

Practice exercise PE22 Answer page 128Sketch the curves of the following functions:
(1) f1 : x 7→ x2

x+ 2

(2) f2 : x 7→ x− 1 +
9

x+ 1

(3) f3 : x 7→ −x2 − 2x− 1

x+ 3

(4) f4 : x 7→ x+ 3 +
1

2x+ 1

(5) f5 : x 7→ x2 − 4x+ 6

(x− 2)2

(6) f6 : x 7→ x3 − 1

x2
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Optimisation and other problems

Exercise 50

(1) Find the slope of the curve given by f : x 7→ 5x3 − 25x2 at x = 3.5Equivalent notations:
• f ′(3.5)

• f ′(x)

∣∣∣∣
x=3.5

(2) Find the equation of the line tangent to the curve at x = 1

Exercise 51

(1) For f : x 7→ x2+5 and the point A⟨0, 0⟩, what is the equation of the line passing throughA, and tangent to f? Is it unique?
(2) If g : x 7→ ax2 + b, what values do a and b take to make g(x) tangent to t : x 7→ 3x− 2 at

x = 5? What are the coordinates of the contact point?

Optimal solutions

The optimal solution for a given problem is often equivalent to finding a maximum or minimumof a function which expresses the quantity to be optimised. Bearing in mind the critical pointtheorem 4, page 48, the optimum could be at a non differentiable value, or looking for a maximum,one could have found a minimum, so checking is required.
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Exercise 52A factory wants to make cardboard boxes (with no top) out of sheets of 30cm × 16cm

x

x

The volume will be a function of x. The dimensions of the base are 30− 2x and 16− 2x (incentimetres). The height is x. What value(s) of x give(s) the maximum volume for the box?
Exercise 53A 1l (1dm3) milk pack is made of cardboard. Its sides can only be rectangles. The height istwice one of the other two dimensions. The area of the outside of the pack must be minimal.What are the dimensions of the pack?
Exercise 54Imagine you want to protect a part of a rectangular garden against a wall. You have 100mof fence. (No fence is needed against the wall.)What is the biggest area that you can protect?
Exercise 55A cylindrical jar has a volume defined by its radius and its height. If it contains 1l, what arethe dimensions that will make it have the least outside area?
Exercise 56Find the length and width of the rectangle inscribed within the ellipse given by the formula
4x2 + y2 = 16 (sides parallel to the coordinate axes) such that its area is maximal.
Exercise 57Let P be the parabola given by x 7→ x2 and A be the point ⟨0, 5⟩Find the point(s) on the parabola P such that its (their) distance to A is minimal.
Price setting

The goal of the price-setting process shown here is to set profit-maximizing prices.It usually involves assuming an initial price (and/or profit) and setting an expected salesvolume. Then the marketing strategist predicts how a change in price will affect sales volume.Price setting is then the process of finding the best price.
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Exercise 58A hardware store has 300 lawnmowers. The manager assumes that at 200 e each, they willall be sold.The manager also assumes that for each increase by 10 e, there will be 2 less sold.Determine the retail price that will ensure the maximal income. (Which requires to write theequation for the profit depending on the number of times 10 e have been added to the price.)
Exercise 59Now the hardware store must pay the lawnmowers and has administrative expenses whichdecrease with the number of lawnmowers.The price of a lawnmower for the hardware store is 120 e and the administrative expensesare assumed to be (0.5 + 1

n) e, where n is the number of lawnmowers that are sold.Determine the price which will maximise the profit of the hardware store with these newconditions.
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Chapter 9

Areas

Exercise 60Find the derivative of f : x 7→ x3

3 .Same question for g : x 7→ x3

3 + 5

Consider
f : x 7→ x2We would like to calculate the area under the curve, above the x-axis, between x = 1 and

x = 3

x

y

f

321

f

2 + dx

A(2)

∆A(2)

H

K
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(of course dx is drawn much too large so as to understand where it is.)
There is a difficulty: we know formulae for calculating areas of rectangles, triangles, circlesand some other figures, but not for an arbitrary curved surface.The great idea of analysis is to discover functions by observing their variation.For this we consider first the area up to 2 and its variation to 2+dx. The area of the curvedslice ∆A(2) is between the area of the rectangle whose base is dx and whose height is H andthe rectangle whose base is dx and whose height is K .If dx > 0 we have f(x+ dx) > f(x) and

H · dx = f(2) · dx < ∆A(2) < f(2 + dx) · dx = K · dx

and dividing all terms by dx

f(2) <
∆A(2)

dx
< f(2 + dx)

and we conclude that
f(2) ≃ ∆A(2)

dxThe conclusion is the same for a variation on the left:
f(2− dx) · dx < ∆A(2) < f(2) · dx

which also leads to f(2) ≃ ∆A(2)
dxTherefore A′(2) = f(2) and in general we will have A′(x) = f(x). Using results of exercise60, it is possible to check that A(x) =

x3

3
but x3

3
+ k also satisfies the requirement. For bothcases, in fact, A′(x) = x2 = f(x).Our problem seems to be underdetermined: we have the unknown parameter, k. The questionnow is: what value does k have to take?Let’s consider A(1), the area under f from 1 to 1. Surely, A(1) = 0, but we also know that

A(1) =
13

3
+ k, hence 0 =

13

3
+ k ⇒ k = −1

3 . Now that we have determined the value ofthe parameter k, let’s get back to our initial task and calculate the area under the curve f(x)between x = 1 and x = 3; this is:
A(3) =

33

3
+ k =

33

3
− 1

3
=

8

3
.

This is a first step in showing what was hinted in the introduction page 2,that the area and the slope are inverse properties.
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Exercise 61Using the same method as above, calculate the area under f : x 7→ x2 and above the x-axis,between x = 2 and x = 6. Use that A(2) = 0.

Property 21 Let f be a non-negative function continuous on [a, b]. Then the function
A : x 7→ A(x)

where A(x) is the area under the curve of f between a and x has the followingproperties
(1) A′(x) = f(x), whenever x ∈ [a, b]

(2) A(a) = 0

a b

x+ dx

x

∆A(x)A(x)

f

Proof
f is assumed to be continuous so on any closed interval it has a maximum and a minimum(see theorem 3, page 38).For dx > 0. On [x, x+ dx] the function reaches a maximum, f(xM ), and a minimum, f(xm).Hence the slice ∆A(x) is bounded below by the rectangle f(xm) ·dx and above by the rectangle

f(xM ) · dx.
While it was clear for the example of the beginning of this chapter where the maximum and

minimum were (because we knew the function’s rule), what is done here is to show that we can
find the same relation for any continuous function.

Hence
f(xm) · dx ≤ ∆A(x) ≤ f(xM ) · dxthen, dividing by dx we get:

f(xm) ≤ ∆A(x)

dx
≤ f(xM )
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And since xm and xM are in [x, x+ dx] we have xm ≃ x ≃ xMThe statement is about f , a and x.
xm ≃ x ⇒ f(xm) ≃ f(x)

xM ≃ x ⇒ f(xM ) ≃ f(x)We conclude that
∆A(x)

dx
≃ f(x)

By taking dx < 0 we notice that the area decreases and the the inequalities are reversed,hence, not depending on the choice of dx (provided it is ultrasmall) we have
∆A(x)

dx
≃ f(x) ⇒ A′(x) = f(x)

Note that if f is a negative function, then ∆A(x) ≃ f(x) · dx < 0: the method describedabove for the area between the function and the x-axis will produce a negative number.
A(a) = 0 by the definition that it is the area between a and a

In exercise 61, page 71, an area is found using a function A with a constant given by thecondition A(2) = 0. Now we would like to have the area under f : x 7→ x2 between x = 3 and
x = 6:The figure will look like the following (vertical scale and horizontal scale not the same)

x

y

32 6

f

We notice that the area in gray can be computed from what we already know by exercise61 and the corresponding area function A : x 7→ x3

3 − 4 by considering it is the area between 6and 2 minus the area between 3 and 2, all of which can be computed using A as before, sincethe condition A(2) = 0 is the same for both areas.
Area from 3 to 6 = A(6)−A(2)− [A(3)−A(2)] = A(6)−A(3) (*)

A(2) which gave the condition k = −4 disappears.We compute the values : A(6) = 63

3 − 4 and A(3) = 33

3 − 4 so
A(6)−A(3) =

63

3
− 33

3the constant k = −4 cancels.
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One can notice that if B(x) = A(x) + k for any constant k, the result will be the same: theconstant cancels in any computation of the form B(b)−B(a).
Notation

f(b)− f(a) is written f(x)
∣∣∣b
a

so A(b)−A(a) = A(x)
∣∣∣b
a

Definition 18 (Integral) The generalisation of the concept of area — such that whenthe function is positive on [a, b], this produces a positive value, and when the functionis negative, this produces a negative value — is the integral of f between a and b,denoted by ∫ b

a
f(x) · dx

The reason why the integral notation uses a product f(x) · dx will be justified page 75.
Using the notation introduced above and recalling the method used to calculate the areasunder the function curves, we can write:∫ b

a
f(x) · dx = A(b)−A(a)

or, equivalently:
A(x)

∣∣∣b
a
=

∫ b

a
f(x) · dx where A′(x) = f(x).

This is the a number which represents the generalised area, the integral, of f between a and b.
So the area denoted by (∗) can be written∫ 6

3
x2 · dx =

x3

3

∣∣∣∣6
3

Antiderivative

Definition 19 (Antiderivative) An antiderivative of a function f is a function A suchthat A′(x) = f(x), and it is denoted by: A =
∫
f(x) · dx

By property 11, page 50, the antiderivative is unique up to an additive constant.
Exercise 62Find antiderivatives for the following:
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(1) x 7→ 3x(2) x 7→ x2(3) x 7→ 5(4) t 7→ 3t+ 5

(5) u 7→ u2 + 3u+ 5

(6) v 7→ v3

(7) x 7→ 1√
x

Check your results by differentiating them.
Exercise 63Newton assumed that objects fall to the ground with a constant acceleration, denoted by g.Given such an acceleration, how can one find the equation of the distance travelled by a fallingobject with respect to time?
Exercise 64Using A′ = f and A(a) = 0:(1) Calculate the area between the curve and the x-axis for y = x2 from x = −5 to x = 5(2) Calculate the area between the curve and the x-axis for y = x3 from x = 0 to x = 3(3) Calculate the area between the curve and the x-axis for y = x3 from x = −2 to x = 0(4) Calculate the area between the curve and the x-axis for y = x3 from x = −10 to x = 10

Exercise 65Calculate the area between y = 5x4 − 3x3 + 2x2 − 10 and the x-axis from x = −1 to x = 1

Fundamental theorem of calculus
All these results put together yield:

Theorem 7 (Fundamental theorem of calculus)
Let f be a function continuous on [a, b]

(1) Then
F (x) =

∫ x

a
f(t) · dt

is an antiderivative of f on ]a, b[ and is the only one satisfying F (a) = 0

(2) Let F be an antiderivative of f on ]a, b[. Then∫ b

a
f(x) · dx = F (b)− F (a)

This is essentially re rephrasing of property 21 using definitions 18 and 19.
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The integral as ultralarge sum

The ∫ symbol is an elongated S and stands for the Latin word ”summa”: a sum, since it canalso be shown that instead of finding the area as a variation, it is a ∫ um of ∫ lices.
Exercise 66Consider the variation of F between a and b.Let N ∈ N such that 1/N ≃ 0 and dx = b−a

N and xk = a+ k · dx, for k between 0 and N .Then clearly, we have
F (b)− F (a) =

N−1∑
k=0

∆F (xk)

Here the observability is determined by f, a, b – not necessarily any given xj!(1) On each interval [xk, xk+1] (which is also in the form [xk, xk + dx]) there is a c such that
F (xk + dx)− F (xk) = f(c) · dx

This is due to the mean value theorem, (theorem 6, page 49).
(2) Explain why we have f(c) ≃ f(xk)(3) Conclude by explaining why:

N−1∑
k=0

F (xk + dx)− F (xk) =

N−1∑
k=0

f(xk) · dx+

N−1∑
k=0

εk · dx

(4) The part
N−1∑
k=0

εk · dx

is ultrasmall. To prove this, let ε = max{|εk| | 0 ≤ k ≤ N}Complete the proof of this claim.
so

≃
N−1∑
k=0

f(xk) · dx

Hence, the global variation of F between a and b is, up to an ultrasmall value, the sum of
F ′(xi) · dx provided F ′ is continuous on [a, b]

But then since F (b) − F (a) is observable (by closure), the global variation can be defined
as the observable neighbour of N−1∑

k=0

f(xk) · dx

If bounds are given, the integral represents a value: it is a definite integral. If no boundsare given, it represents an antiderivative: it is an indefinite integral.
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Exercise 67Show that for a definite integral, it does not matter which antiderivative is chosen.
Since the antiderivative is unique up to an additive constant (property 11, page 50), this

means that it does not depend on the value of the constant.

The results obtained in this section can be formalized in an alternative definition of integral.
Definition 20 (Integral as an ultralarge sum ) Let f be a function (continuousor piecewise continuous) defined on an interval [a, b], the integral

∫ b
a f(x)dx is theobservable neighbour (if it exists) of

N−1∑
k=0

f(xk) · dx

(with dx = b−a
N ), provided also that this value does not depend on the ultralargenumber N .

Definitions 18, page 73 and 20 are in fact equivalent for continuous functions; definition 18is simpler and will be usually used in the following.
Exercise 68A constant function f : x 7→ C from a to b defines a rectangle. Check that the area under fis the “usual” formula: (b− a) · C

Exercise 69The function y = x defines a triangle for x between 0 and 4. Show that the area of thetriangle from 0 to a yields the “usual” result for the area of a triangle.
Exercise 70Sketch the curve of f : x 7→ x2 and g : x 7→ x3. Calculate the points where f(x) = g(x)Calculate the geometric area of the closed surface between the two curves.
Integration rules

Property 22 (Linearity of the integral) Let f and g be real functions continuous on
[a, b]. Let λ be a real number. Then

(1) ∫ b

a
(λ · f(x)) · dx = λ ·

∫ b

a
f(x) · dx

(2) ∫ b

a
(f(x) + g(x)) · dx =

∫ b

a
f(x) · dx+

∫ b

a
g(x) · dx
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These are simply the converse rules of linearity of the derivative.
Property 23 (Additivity of the integral) Let f be a real function continuous on [a, c]and b ∈ [a, c]. Then ∫ b

a
f(x) · dx+

∫ c

b
f(x) · dx =

∫ c

a
f(x) · dx

Exercise 71For each of the following functions, find the general form of the antiderivative:
(1) f : x 7→ 8

√
x

(2) f : t 7→ 3t2 + 1

(3) f : t 7→ 4− 3t3

(4) f : s 7→ 7s−3

(5) f : x 7→ (x− 6)2

(6) f : y 7→ y
3
2

(7) f : x 7→ |x|(8) f : u 7→ u2 + u−2

(9) f : x 7→ 4

(10) f : t 7→ t

(11) f : z 7→ 2

z2

Check your results by differentiating them.
Exercise 72

(1) If F ′(x) = x+ x2 for all x, find F (1)− F (−1)

(2) If F ′(x) = x4 for all x, find F (2)− F (1)

(3) If F ′(t) = t
1
3 for all t, find F (8)− F (10)

Property 24 (Integration with inside derivative) Let f and g be real functions dif-ferentiable on [a, b] such that f ′ and g′ are continuous on [a, b]. Then∫ b

a
f ′(g(x)) · g′(x) · dx = f(g(x))

∣∣∣∣b
a
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Exercise 73Prove property 24.
Property 25 (Integration by parts) Let f and g be real functions continuous on
[a, b] such that f ′ and g′ are continuous on [a, b]. Then∫ b

a
f ′(x) · g(x) · dx = f(x) · g(x)

∣∣∣∣b
a

−
∫ b

a
f(x) · g′(x) · dx

ProofThis is the converse of the product rule (u · v)′ = u′v + uv′

(u · v)′ = u′v − uv′

hence ∫ b

a
(u · v)′ · dx =

∫ b

a
u′v · dx−

∫ b

a
uv′ · dx

u · v
∣∣∣∣b
a

=

∫ b

a
u′v · dx−

∫ b

a
uv′ · dx

Integration by variable substitution

In this section, the differential notation (see page 47) and the chain rule (see page 56) are usedextensively.Consider ∫ b

a
f(g(x)) · dx

If we write g(x) = u then du
dx = u′(x) and dx = du

u′ , f(g(x)) · dx becomes f(u)
u′ · du and thebounds must be changed to a1 and b1 so that a1 = g(a) and b1 = g(b).This yields:

∫ b

a
f(g(x)) · dx =

∫ b1

a1

f(u)

u′
· du.

The difficulty in using this method is usually to find which variable substitution is best.
Example: Evaluate ∫ 2

1
2x · (x2 + 1)2 · dx
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Considering that 2x is the inside derivative, the antiderivative can be seen to be (x2+1)3

3 ,and
(x2 + 1)3

3

∣∣∣∣∣
2

1

= (53 − 23)/3 = 39

Here we consider another approach by variable substitution.Let u = x2 + 1, then du
dx = 2x hence dx = du

2x .Then
2x · (x2 + 1)dx = 2x · u2 · du

2x
= u2 · du

As for the bounds: if x = 1 then u = x2 + 1 = 2 and if x = 2 then u = 4 + 1 = 5, hence∫ 2

1
2x · (x2 + 1)2 · dx =

∫ 5

2
u2 · du =

u3

3

∣∣∣∣5
2which gives (125− 8)/3 = 39.

Example: Let ∫ 1

0

√
1 +

√
x · dx

Consider the variable change u = 1 +
√
x. Then x = (u − 1)2 = g(u), the derivative of g iscontinuous. If x = 0 then u = 1 and if x = 1 then u = 2√

1 +
√
x =

√
u if u = 1 +

√
x)

dx = 2 · (u− 1) · duReplacing all terms we obtain∫ 1

0

√
1 +

√
x · dx = 2

∫ 2

1

√
u · (u− 1) · du = 2

∫ 2

1

(
u3/2 − u1/2

)
· du

so that
2

(
2

5
u5/2 − 2

3
u3/2

) ∣∣∣∣2
1

=
8 + 8

√
2

15As g has an inverse which is x 7→ 1 +
√
x and is differentiable (except at x = 0), we can revertto the variable x and find an antiderivative:∫ √

1 +
√
x · dx =

4

5

(√
1 +

√
x

)5

− 4

3

(√
1 +

√
x

)3

+ C

Exercise 74Calculate ∫ 1

0

√
5x+ 2 · dx

Use u = 5x+ 2. Calculate du, change the bounds, calculate the integral.Same integral. Use v =
√
5x+ 2

Exercise 75Use variable substitution to evaluate the following:
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(1) ∫ 10

0

1

(2x+ 2)2
· dx

(2) ∫
(3− 4z)6 · dz

(3) ∫ 1

−1
2t
√
1− t2 · dt

(4) ∫ b

a

√
3y + 1 · dy

(5) ∫
4y

(2 + 3y2)2
· dy

(6) ∫ 2

−2
x(4− 5x2)2 · dx

(7) ∫
(1− x)

3
2 · dx

Practice exercise PE23 Answer page 128
(1) ∫ 1

0

u√
1− u2

· du

(2) ∫ 2

1

u√
1− u2

· du

(3) ∫ 1

0

√
1 +

√
x · dx

(4) ∫ 10

0
t(t2 + 3)−2 · dt

(5) ∫ 5

√
6
x(x2 + 2)

1
3 · dx

(6) ∫ 1

−1

x2

(4− x3)2
· dx

(7) ∫ 2

1

1

t2
√
1 +

1

t

· dt

Practice exercise PE24 Answer page 128Find the antiderivatives of the following functions:
• fa : x 7→ 5x4 − 2x+ 4

• fb : x 7→ x3 − 5x2 + 3x− 2

• fc : x 7→ 2x− 1

• fd : x 7→ 5

4
x4 − 3

4
x2 +

5

2
x+

3

2

• fe : x 7→ 2x+ 1− 1

x2

• ff : x 7→ 3 +
2

x2
− 5

x3

• fg : x 7→ x3 +
1

x2

• fh : x 7→ 3
√
x+

1
3
√
x

• fi : x 7→ 1√
x
+
√
x

• fj : x 7→ (x+ 1)2• fk : x 7→ 15(3x− 2)4• fl : x 7→ (2x+ 1)3• fm : x 7→ (3− x)11• fn : x 7→ (3− 4x)4• fo : x 7→
√
3x− 2

• fp : x 7→ 1√
x− 1• fq : x 7→ 4x(3− x2)5• fr : x 7→ (2x− 3)(x2 − 3x+ 1)4
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• fs : x 7→ (3x2−4x+1)(x3−2x2+x+3)2

• ft : x 7→ (4x2 − 5x)2(16x− 10)

• fu : x 7→ (3x− 1)(3x2 − 2x+ 5)3

• fv : x 7→ 2x

(x2 + 1)2

• fw : x 7→ 2x+ 1

(x2 + x+ 3)2

• fx : x 7→ x
√
x2 + 1

• fy : x 7→ 3x2√
9 + x3

• fz : x 7→ (3x2 + 1)
√

x3 + x+ 2

Applications of the integral

Exercise 76In the following problems an object moves along the y axis. Its velocity varies with respectto the time. Find how far the object moves between the given times t0 and t1

(1) v = 2t+ 5 t0 = 0 t1 = 2(2) v = 4− t t0 = 1 t1 = 4(3) v = 3 t0 = 2 t1 = 6

(4) v = 3t2 t0 = 1 t1 = 3

(5) v = 10t−2 t0 = 1 t1 = 100

Mean value of a functionThe mean value is unambiguous when we consider n points, where n is a positive integer.We now show that defining the mean value of a continuous function on [a, b] as
1

b− a

∫ b

a
f(x) · dx

is a natural extension of this concept.Consider a continuous function f and the interval [a, b]. These determine the observability.Let N be a positive ultralarge integer. Let dx = (b−a)/N and xi = a+i·dx, for i = 0, . . . , N−1.Then the mean value of the function can be approximated by the mean value of the N points
f(xi), i = 0, . . . , N − 1. But

N−1∑
i=0

f(xi)

N
=

dx

b− a

N−1∑
i=0

f(xi) =
1

b− a

N−1∑
i=0

f(xi) · dx ≃ 1

b− a

∫ b

a
f(x) · dx

since f is continuous on [a, b]The mean value is the part of this number which is observable i.e., the integral. We thereforedefine:
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Definition 21 The mean value of a function f continuous on [a, b] is
1

b− a

∫ b

a
f(x) · dx

The mean value is a number µ such that the area under the curve is equal to µ · (b− a), i.e.,the height of a rectangle of basis (b− a) whose (oriented) area is equal to the integral.In the following figure, the gray area is equal to the area bounded by the blue line.

y

x

a b

f

µ

c

Property 26 If f is a function continuous on [a, b], then there exists a point c ∈ [a, b]such that f(c) is the mean value of the function on [a, b]

Note that property 26 is a restatement of the mean value theorem, for the antiderivative of
f . When we claim that there is a c ∈ [a, b] such that

f(c) =
1

b− a

∫ b

a
f(x) · dx

we are in fact asserting that there is a c ∈ [a, b] such that
f(c) · (b− a) =

∫ b

a
f(x) · dx = F (b)− F (a)

and as F ′(x) = f(x), we conclude that there is a c ∈ [a, b] such that F ′(c) ·(b−a) = F (b)−F (a)

Exercise 77Calculate the mean value of x 7→ x2 on [−4, 4]

Exercise 78Calculate the mean value of x 7→ x3 on [−4, 4].
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Exercise 79Let f : x 7→ x2 and the interval [0, t]. Find the value of t such that the mean value of f overthe interval is equal to π.
Exercise 80An object falling on Earth satisfies the equation d(t) = 1

2gt
2 where g ≈ 9.81[ms2 ], t is thetime in seconds and d(t) is the vertical distance in meters.If an object falls for 10s, what is its average distance from its initial point?

Solid of Revolution

x

a

y

b

f

xi xi+1

f(xi)

f(xi+1)

Exercise 81An area is calculated by approximating the surface by ultrasmall rectangles. To find theformula for the volume of a solid of revolution, proceed in the same manner: consider that thesolid is ultraclose to an ultralarge number of ultrathin disks. Find the formula for the volume ofa solid of revolution given by a function f .
Exercise 82Evaluate the volume of the solid of revolution of y =

1

x
around the x-axis between x = 1and x = 10.

Arc length

Definition 22 Let f : [a, b] → R be differentiable with a continuous derivative. Thenthe graph of f has length
L =

∫ b

a

√
1 + f ′(x)2 · dx
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xi xi+1

f(xi)

f(xi+1)

Justification: If the function is differentiable, the function is indistinguishable from the hy-potenuse of a right-angled triangle whose catheti are dx and ∆f .Assume dx > 0. The variation of length of this line is
∆L =

√
dx2 + (∆f(x))2 =

√
dx2

(
1 +

(∆f(x))2

dx2

)
=

√
1 +

(∆f(x))2

dx2
· dx

hence
∆L(x)

dx
=

√
1 +

(∆f(x))2

dx2
≃

√
1 + f ′(x)2

Exercise 83Find the lengths of the following curves:
(1) y = 2x3/2 0 ≤ x ≤ 1

(2) y =
2

3
(x+ 2)

3
2 0 ≤ x ≤ 3

Summary of this chapter
The derivative defines the slope at a given point. This is a local property. It is determined by
first finding an approximation on an ultrasmall interval.

The integral defines the area under a function on an interval. This is a global property. It is
determined by first dividing the interval into an ultralarge numbers of ultrasmall pieces to find
an approximation.

(Similarly, the intermediate value theorem (page 37) and the extreme value theorem (page
38) are about the behaviour of a function on an interval and are proven by first dividing the
interval into an ultralarge number of pieces.)
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Chapter 10

Trigonometry and circular functions

Exercise 84Given that the circumference of the Earth is (theoretically) 40 000km, what is the radius ofthe Earth?
Exercise 85If a bridge were built at a constant height of 10m all around the Earth’s equator – with itstheoretical measure of 40 000km – how much longer than the equator would the bridge be?

Angles

An angle is defined by two lines meeting at a point called the vertex of the angle. The anglecan be regarded as the measure of the rotation involved in moving from one line to coincide withthe other line.The rotation is measured by drawing a circle centred at the vertex and observing what amountof the circle is covered by the rotation.Up till now, the measure for angles was done in degrees. One degree (1◦) is the angledefined by 1
360 th of a circle i.e., one complete turn is 360◦.

△! This measure does not depend on the size of the circle.
Radian measure

Another way to measure an angle is to consider the proportion of a complete circle by comparingthe arclength determined by the angle with the arclength of the complete circle.For instance one eighth of a circle (half of a right angle):
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The complete circle (circumference) measure π · 2 · r where r is the radius.The blue arc is one eighth of the circumference: 2πr
8 = π

4 · r.This measure depends on the radius, so we define:
Definition 23Consider a circle centred on the vertex of an angle, and the arclength determined bythe intersection of the arms of the angle with the circumference of the circle.
The angle in radian measure is the ratio arclentgthradius

Thus the angle above becomes simply π
4 .Notice that the length units have cancelled!

Exercise 86In radian measure:Considering a circle of radius r:
(1) What is the measure of a complete turn (a round angle)?
(2) What is the measure of a right angle (a quarter turn)?
(3) What is the measure of a flat angle (half a turn)?

Exercise 87Find the formula for transforming a degree measure to a radian measure.
Exercise 88Transform the following into radian measure:

(1) 60◦

(2) 22.5◦

(3) 30◦

(4) 15◦
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(5) 7.5◦(6) 120◦(7) 10◦

(8) 1◦

(9) 452◦

Exercise 89Find the formula for transforming a radian measure to a degree measure.
Exercise 90Transform the following into degree measure:

(1) 1

(2) π

3

(3) 0.1

(4) 2π

3

(5) 7π

4(6) 15π

(7) 16π

(8) 3

(9) 1.5

Exercise 91One nautical mile is the length of arc of 1 minute at the surface of the Earth. (One minuteis the sixtieth of a degree, the sixtieth of a minute is a second.)What is one minute of arc in radian measure?What is the length of one nautical mile? 1
Exercise 92A circular sector is the part of a disc lying between two radii.Find the area of a sector of angle θ (in radian measure).
Exercise 93A circle has a radius of 2.5m. Find the area of a sector of angle 3π

4

Exercise 94In a unit circle, what is the angle of a sector of area 1? (radian measure)
△! In analysis, only radian measure is used.

1Because the Earth is not a perfect sphere, the official length of the nautical mile is now slightly different anddoes not depend on which part of the Earth you are.
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Trigonometric ratios

In a right-angled triangle the following ratios have been defined:

adjacent cathetus
opposite cathetushypotenuse

θ

sin(α) =
opposite cathetushypotenuse

cos(α) =
adjacent cathetushypotenuse

tan(α) =
opposite cathetusadjacent cathetus

Circular functions

We now redefine these ratios in the trigonometric circle which has a radius equal to 1 centredon the origin and angle direction is anti-clockwise, starting from the positive abscissa semiline.The original definitions work only for positive values (lengths are always positive) i.e., onlyfor the first quadrant. These definitions are now extended to the whole unit circle: the sine isthe vertical coordinate of a point, the cosine is its horizontal coordinate, the position of the pointgiven by its arc-length determines the angle

x1

1y
θ

P

cos(θ)
sin(θ)

As the radius is 1, we then have
sin(θ) =

opposite cathetus
1

= opposite cathetus = yP

cos(θ) =
adjacent cathetus

1
= adjacent cathetus = xP

tan(θ) =
opposite cathetusadjacent cathetus =

sin(α)

cos(α)

If we unroll the circle, the values of sin , cos and tan as functions of θ appear as in thefollowing:
The Sine curve
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-1·π 0·π 1·π 2·π 3·π
θ

yP
y = 1

y = −1

The Cosine curve

-1·π 0·π 1·π 2·π 3·π
θ

xP
x = 1

x = −1

The Tangent curve

-1·π 0·π 1·π 2·π 3·π
θ

y

Properties of circular functions

Property 27 Sine and cosine are continuous functions.
Consider the trigonometric circle. The chord BC is shorter than the arc BC .

x

y

∆cos(θ)

∆ sin(θ)

θ
dθ

C

B
s

10
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ProofBy Pythagoras: (∆ sin(θ))2 + (∆cos(θ))2 = (BC)2 < (dθ)2 ≃ 0This implies both ∆sin(θ) ≃ 0 and ∆cos(θ) ≃ 0

Property 28
sin(dθ)

dθ
≃ 1

ProofWe consider dθ > 0

cos(dθ)

sin(dθ)
dθ

tan(dθ)

Comparing the area of the sector with that of the inside and outside triangles, we obtaininside triangle ≤ sector ≤ outside triangle.Inside triangle area: cos(dθ)·sin(dθ)
2Sector area : dθ

2 (Note that this result is not valid for angles in degrees.)Outside triangle: 1·tan(dθ)
2 =

sin(dθ)
cos(dθ)

2 = sin(dθ)
2 cos(dθ)Dividing everything by sin(dθ)/2 (which is positive) we obtain

cos(dθ) <
dθ

sin(dθ)
<

1

cos(dθ)By continuity, cos(dθ) ≃ 1. So 1
cos(dθ) ≃ 1 also, hence dθ

sin(dθ) ≃ 1.
By symmetry through the x-axis, the same holds for dθ < 0

Property 29
1− cos(dθ)

dθ
≃ 0

ProofMultiply above and below by (1 + cos(dθ))This yields
1− cos2(dθ)

dθ · (1 + cos(dθ)︸ ︷︷ ︸
≃1

)
≃ sin2(dθ)

2 · dθ
=

sin(dθ)

dθ︸ ︷︷ ︸
≃1

· sin(dθ)︸ ︷︷ ︸
≃0

·1/2 ≃ 0
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Property 30

(1)
sin′(θ) = cos(θ)

(2)
cos′(θ) = − sin(θ)

ProofWe use
sin(α+ β) = sin(α) cos(β) + cos(α) sin(β)

to expand ∆sin(θ) = sin(θ + dθ)− sin(θ), we have:
∆sin(θ)

= sin(θ) cos(dθ) + cos(θ) sin(dθ)− sin(θ)

= sin(θ) · (cos(dθ)− 1) + cos(θ) sin(dθ)

divide by dθ

∆sin(θ)

dθ
= sin(θ) · (cos(dθ)− 1)

dθ︸ ︷︷ ︸
≃0

+cos(θ)
sin(dθ)

dθ︸ ︷︷ ︸
≃1

≃ cos(θ)

hence sin′(θ) = cos(θ).
Exercise 95Use

cos(α+ β) = cos(α) cos(β)− sin(α) sin(β)

to prove that cos′(θ) = sin(θ).
Exercise 96Use tan(x) = sin(x)

cos(x) to prove that tan′(x) = 1 + tan2(x)

The sine function assigns a (vertical) coordinate to an angle. The inverse function of thesine function is the function that assigns an angle to a vertical coordinate. If sin(θ) = y, thenthe inverse function of sine is the arc whose vertical coordinate is y, hence the name arcsine.Symbol: arcsin(y) = θ, also noted on calculators as sin−1(y) = θ, or, depending on the brand:
asin(y) = θ.
△! sin−1 is not 1

sin .
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Property 31

(1)
arcsin′(x) =

1√
1− x2(2)

arccos′(x) = − 1√
1− x2(3)

arctan′(x) =
1

1 + x2

ProofThese are inverse functions. We use property 20, page 61, and the f(x) = y notation.(1)
sin(y) = x and dx

dy
= cos(y) =

√
1− sin2(y) =

√
1− x2

hence
dy

dx
=

1√
1− x2(2)

cos(y) = x and dx

dy
= − sin(y) =

√
1− cos2(y) =

√
1− x2

hence
dy

dx
= − 1√

1− x2(3)
tan(y) = x and dx

dy
= 1 + tan2(y) =

√
1 + x2

hence
dy

dx
=

1

1 + x2

Exercise 97Compute the derivatives of the following:(1) f : x 7→ sin2(3x+ π)(2) g : x 7→ x · sin(x2 + 1)

(3) h : x 7→ sin2
(

x

x2 + 1

)
+ cos2

(
x

x2 + 1

)
(4) j : x 7→ 1 + tan2(x)
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Exercise 98

(1) Show that f : x 7→ sin6(x) + cos6(x) + 3 sin2(x) cos2(x) is a constant function.(Hint: use the derivative. . . )
(2) At what values does f : x 7→ sin(x) + cos(x) have stationary points?
(3) What is the equation of the straight line tangent to y = sin2(x) at x = π

4 ?
Example: Consider the integral ∫ π/2

0
x · sin(x) · dx

To integrate by parts, use f ′ : x 7→ sin(x) et g : x 7→ x. We have f(x) = − cos(x) and g′(x) = 1hence ∫ π/2

0
x · sin(x) · dx = −x · cos(x)

∣∣∣∣π/2
0

+

∫ π/2

0
cos(x) · dx = sin(x)

∣∣∣∣π/2
0

= 1

We also deduce that ∫
x · sin(x) · dx = −x · cos(x) + sin(x) + C

Exercise 99Use integration by parts to compute the following integrals:
(1) ∫

x · cos(x) · dx

(2) ∫
(cos(x))2 · dx

(3) ∫
x2 · sin(x) · dx

(4) ∫
sin(x) · cos(x) · dx

Exercise 100Compute the following integrals:
(1) ∫

2x · sin(x2) · dx

(2) ∫
x2 · (x3 + 1) · dx

(3) ∫
sin(x) · cos(cos(x)) · dx

(4) ∫
sin(x) · cos2(x) · dx

Summary of this chapter

• sin′(x) = cos(x)• cos′(x) = sin(x)

• tan′(x) =
1

cos2(x)

• also
tan′(x) = 1 + tan2(x)

• arcsin′(x) =
1√

1− x2

• arccos′(x) = − 1√
1− x2

• arctan′(x) =
1

1 + x2
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Chapter 11

Transcendental functions

A transcendental function is a function that cannot be written as a combination of polynomials,rational functions, root functions or compositions of these.Given this definition, all circular functions are transcendental functions, together with theones that we will introduce in this chapter.The functions studied here are of extreme importance in all areas of science and engineering,and although they are linked to trigonometry, they deserve a specific chapter.
Antiderivative of x 7→ 1

xLet n be a positive integer. From (xn+1)′ = (n+ 1) · xn we can deduce∫
xn · dx =

1

n+ 1
xn+1 + C, n ̸= −1

Hence an antiderivative of x 7→ 1

x
is not a particular case of this formula.

Though 1
x is not transcendental, it turns out that its antiderivative is quite special!

Exercise 101Let f be an antiderivative of x 7→ 1
x (why is there one?) Then f is strictly increasing (why?)and so it has an inverse, call it g.Show that this implies g′(x) = g(x).

Practice exercise PE25 Answer page 129Let a, b > 0. Considering an antiderivative of 1
t , use the substitution u = t

a to show that∫ a·b

a

1

t
· dt =

∫ b

1

1

u
· du

We now consider an antiderivative given by
f(x) =

∫ x

1

1

t
· dt =

∫ x

1

1

u
· du (*)
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Then
f(a) + f(b) =

∫ a

1

1

u
· du+

∫ b

1

1

u
· du =

∫ a

1

1

u
· du+

∫ ab

a

1

u
· du =

∫ ab

1

1

u
· du

From this result, we deduce that f(a) + f(b) = f(a · b):
Exercise 102Let a > 0 and b a rational number. Considering f to be an antiderivative of 1

x as (*) page95, show that
f(ab) = b · f(a)(To find the substitution, consider the transformation of the bounds.)

Exercise 103What kind of function has the properties f(a · b) = f(a) + f(b) and f(ab) = b · f(a)?
Property 32 The antiderivative f of 1

x satisfies the following limits:
lim

x→0+
f(x) = −∞ and lim

x→+∞
f(x) = +∞

Exercise 104Prove property 32. Hint: for ultralarge x use ultralarge N such that 2N ≤ x.
Definition 24 The natural logarithm is the function ln :]0,+∞[→ R defined by

x 7→
∫ x

1

1

t
· dt

To indicate the natural logarithm function, we use the notation ln(x).
Definition 25 e is the unique number such that

ln(e) = 1

e is an irrational number whose first digits are
e = 2.71828 . . .
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Definition 26 The exponential function exp : R −→]0,+∞[ is the inverse of ln
Thus ln is in fact loge and ln(e) = 1We have, for rational x, that ax = exp(x ln(a)), hence ex = exp(x). For irrational x, we

define ax to be exp(x ln(a)) hence also ex = exp(x) for all x.We also have ln(ay) = y · ln(a) for all y. Writing x = ay we get ln(x) = loga(x) · ln(a) so
loga(x) =

ln(x)
ln(a)

Property 33

(1) Let b ∈ R. The function x 7→ xb is differentiable on its domain and
(xb)′ = b · xb−1, for all x ∈ R.

(2) Let a > 0. The base a exponential is differentiable on its domain and
(ax)′ = ln(a) · ax, for x > 0

(3) Let a > 0. The base a logarithm is differentiable and (loga(x))
′ = 1

ln(a)·x

Exercise 105Prove property 33.
Exercise 106Let f be a positive real function whose derivative is continuous. Calculate:∫

f ′(x)

f(x)
· dx

Exercise 107Calculate ∫
tan(x) · dx

Exercise 108Let f be a positive real function whose derivative is continuous. Calculate:∫
f ′(x) · ef(x) · dx

Exercise 109Using ln(x) = 1 · ln(x), use integration by parts to compute ∫
ln(x)dx
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Exercise 110

(1) Differentiate ln(x)

(2) Differentiate ex

(3) Integrate x 7→ ex

(4) Differentiate the function x 7→ ln(ln(x))

(5) Differentiate the function x 7→ ln(xa) (Note that a is not the variable!)
(6) Differentiate the function x 7→ ln(ax)

(7) Differentiate x 7→ ex
2

(8) Using the fact that u = eln(u) (if u > 0) differentiate x 7→ ax (for a > 0 and x > 0)
(9) Same idea: Differentiate the function x 7→ xx

Exercise 111Differentiate ln(|x|)

This proves the following extension:
Property 34 The antiderivative of 1

x is ln(|x|) +K for K ∈ R.

Summary of this chapter

• ln′(x) =
1

x• (ex)′ = ex
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Chapter 12

Curve sketching – advanced functions
and techniques

Bending

If the velocity of an object is constant over time, the graph with time as independent variable(horizontal axis) and distance as dependent variable (vertical axis) is a straight line.The faster the object, the steeper the line

time

distance

slow
fast

slower

faster

The velocity is given by ∆f(a)
∆t (unit: distance over time i.e., m

s ) and it is well known that forstraight lines, the slope is the same whichever increment is chosen for ∆t.For an object moving at a varying velocity, the velocity at a given instant a is given by thederivative at a.If an object moves faster and faster, its position graph will bend upwards: it is accelerating.
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time

distance

faster a
nd faster

If an object moves slower and slower, its position graph will bend downwards: it is deceler-ating.

time

distance

slower and slower

The variation of speed over time is an acceleration (or a deceleration).The variation of the derivative of the position over time is the variation of the variation ofthe position over time: it is the derivative of the derivative.The derivative of the derivative of a function f is its second derivative and is symbolisedby f ′′.
Definition 27 Let f be differentiable on an open interval and f ′ be its derivativefunction. If f ′ is also differentiable, then f ′′(x) = (f ′)′(x) and is called the secondderivative of f at x.

If f ′ is differentiable, we say that f is twice differentiable.
Property 35 The second order increment equation for f twice differentiable at a, is

f(a+ dx) = f(a) + f ′(a) · dx+
f ′′(a)

2
· dx2 + ε · dx2

with ϵ ≃ 0.
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ProofFor the proof of this property, we look for a second degree polynomial q(x) which approxi-mates f(x) in the following way
x ≃ a ⇒ f(x)− q(x) = ε · (x− a)2 ≃ 0

The increment equation approximates the function with an error in ε · dx2, which can also bewritten — for x ≃ a — ε · (x− a)2 because in the following proof we consider x as a variable,so we write (x− a) instead of dx.We write q(x) = b0 + b1(x− a) + b2(x− a)2 hence
f(x) = b0 + b1(x− a) + b2(x− a)2 + ε · (x− a)2

For x = a we get f(a) = b0 + 0, hence
q(x) = f(a) + b1(x− a) + b2(x− a)2

and
f(x) = f(a) + b1(x− a) + b2(x− a)2 + ε · (x− a)2 (*)Now we write δ = (b2 + ε)(x− a) ≃ 0 (recall that x ≃ a) and (*) becomes

f(x) = f(a) + b1 · (x− a) + δ · (x− a)

which by the increment equation (see page 44) shows that b1 = f ′(a)So
f(x) = f(a) + f ′(a)(x− a) + b2(x− a)2 + ε · (x− a)2We differentiate this expression (with respect to x, hence f(a) and f ′(a) are constants.

f ′(x) = f ′(a) + 2 · b2 · (x− a) + 2 · ε · (x− a) (**)
Rewriting the increment equation for f ′(x) = f ′(a) + f ′′(a) · dx+ ε · dx and comparing with (**)we see that 2 · b2 = f ′′(a) hence that b2 = f ′′(a)

2
.

Definition 28 Let f be differentiable on a.The curve of f is bending upwards at a if f(x) is above the line tangent to f at
⟨a, f(a)⟩, i.e.,

f(x) ≥ f(a) + f ′(a)(x− a) whenever x ≃ aThe curve of f is bending downwards at a if f(x) is above the line tangent to f at
⟨a, f(a)⟩, i.e.,

f(x) ≤ f(a) + f ′(a)(x− a) whenever x ≃ a
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f(a)

a x

f(x)

T (x)

Property 36 (Bending and second derivative) Let f be twice differentiable at a.Then
(1) If f ′′(a) > 0 then f is bending upwards at a.
(2) If f ′′(a) < 0 then f is bending downwards at a.

ProofUsing the second order increment equation (see page 100 ) we write
f(a+ dx) = f(a) + f ′(a) · dx+

1

2
f ′′(a) · dx2 + ε · dx2

since f ′′(a) > 0 and is observable, f ′′(x) + ε > 0 so f(a + dx) > f(a) + f ′(a) · dx. The proofis similar for f ′′(a) < 0.
Naturally, if f is bending upwards, respectively downwards, at every point of an open interval

I , the function is bending upwards, respectively downwards on I .If f ′′(a) = 0 then f is not bending at a.Another consequence is that if a function f has a maximum at an interior point a of aninterval, then (assuming f ′′(a) exists) f ′′(a) ≤ 0 and if it is a minimum, then f ′′(a) ≥ 0.
Definition 29 (Inflexion point) The point where f ′′(x) = 0 is called an inflexion
point.If f ′′(c) = 0 then ⟨c, f(c)⟩ is an inflexion point.

See example on page 105 for the use of finding inflexion points when drawing a curve.
Rule of de L’Hospital

Theorem 8 (Rule of de L’Hospital for 0/0 )
Let f and g be differentiable functions at a. Suppose that f(a) = g(a) = 0, but that
g′(a) ̸= 0. Then

f(a+ dx)

g(a+ dx)
≃ f ′(a)

g′(a)
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ProofBy the increment equation (page 44)
f(a+ dx)

g(a+ dx)
=

f ′(a) · dx+ ϵ · dx
g′(a) · dx+ δ · dxWe use ε and δ since the ultrasmall quantity in the increment equation is not necessarilythe same for both functions.Upon dividing top and bottom by dx and remembering that ϵ ≃ 0 and δ ≃ 0, we have:

f(a+ dx)

g(a+ dx)
=

f(a+dx)
dx

g(a+dx)
dx

=
f ′(a) + ϵ

g′(a) + δ
≃ f ′(a)

g′(a)

When looking for horizontal asymptotes, we use ultralarge values of x. This can lead tosituations such as f(x)
g(x) with f(x) ≃ 0 ≃ g(x). This is not exactly the situation of theorem 8which uses in the proof that the quotient is between two values exactly zero.Restated here as:If f(x) ≃ 0 and g(x) ≃ 0 for all ultralarge x > 0, then f(x)

g(x) ≃ f ′(x)
g′(x) for all ultralarge x > 0Nonetheless, the theorem does hold also in this case, but the proof is beyond the scope ofthis course.

The rule of de L’Hospital also holds in the case of a quotient between two ultralarge values.Again, a complete proof of this case is beyond the scope of this course. What we will prove hereis that if it holds for the case ultrasmallultrasmall , then it also holds for the case ultralargeultralargeAssume that for some x in the domain, f(x) and g(x) are ultralarge for all x ≃ a. Then
f(x)
g(x) =

1
g(x)
1

f(x)

which is ultrasmallultrasmall so
f(x)

g(x)
≃

(
1

g(x)

)′

(
1

f(x)

)′ =

− g′(x)

g2(x)

− f ′(x)

f2(x)

=
g′(x)

f ′(x)

f2(x)

g2(x)

Hence
f(x)

g(x)
≃ g′(x)

f ′(x)

f2(x)

g2(x)which leads to
g(x)

f(x)
≃ g′(x)

f ′(x)which can be transformed into
f(x)

g(x)
≃ f ′(x)

g′(x)which is what we wanted to show.
Practice exercise PE26 Answer page 129Evaluate using de L’Hospital’s rule.
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(1) √
9 + x− 3

x
for x ≃ 0

(2) 2−
√
x+ 2

4− x2
for x ≃ 2

(3) √
u+ 1 +

√
u− 1

u
for ultralarge u

(4) (1− x)1/4 − 1

x
for x ≃ 0

(5) (
1

t
+

1√
t

)
(
√
t+ 1− 1) for x ≃ 0+

(6) (u− 1)3

u−1 − u2 + 3u− 3
for u ≃ 1

(7) 1 + 5/
√
u

2 + 1/
√
u

for u ≃ 0+

(8) x+ x1/2 + x1/3

x2/3 + x1/4
for ultralarge x

(9) 1− t/(t− 1)

1−
√

t/(t− 1)
for ultralarge t

Exercise 112Evaluate using de L’Hospital’s rule.
(1) 1/t− 1

t2 − 2t+ 1
for t ≃ 1 (with (t > 1))

(2) √
x− 1

3
√
x− 1

for x ≃ 1

(3) x2√
2x+ 1− 1

for x ≃ 0

(4) 2 + 1/t

3− 2/t
for t ≃ 0

(5) x+ 5− 2x−1 − x−3

3x+ 12− x−2
for ultralarge x

(6) (
t+

1

t

)
((4− t)3/2 − 8) for t ≃ 0

(7) u+ u−1

1 +
√
1− u

for ultralarge u

Curve sketching

To sketch the curves of the functions proposed in this chapter, the rule of de L’Hospital may bealso required. The functions may include any combination of functions studied up to now. Somefunctions may be difficult.To determine the points of maximum and minimum value of the functions, instead of analysingthe change in sign of the first derivative of the function, we will check if the second derivativeof the function is positive or negative at the critical point. Also, the computation of the secondderivative will allow us to find any inflexion points.The steps to be taken are now the following:
(1) Find the domain.
(2) Find the roots and the intercepts (if any).
(3) Find the asymptotes (if any).
(4) Find the first derivative (if any).
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(5) Find the roots of the first derivative (if any).(6) Find the second derivative (if any).(7) Determine the maximum and minimum values.(8) Find the roots of the second derivative (if any), the inflexion points and bending direction.(9) Use this information to choose a convenient scale.(10) Sketch the function.Note that finding extrema can be done using the second derivative (negative at a maximum,positive at a minimum) or by checking whether there is a change of the signum of the firstderivative (from positive to negative at a maximum, from negative to positive at a minimum).
Example: As in the example page 63, we use

f : x 7→ x

x2 + 1and recollect the results up to point (5):
−∞ −1 0 1 ∞

f ≃ 0 − − − 0 + + + ≃ 0
f ′ 0 0(6)

f ′′(x) =
−2x(x2 + 1)2 − (1− x2)2(x2 + 1)2x

(x2 + 1)4
=

2x(x2 − 3)

(x2 + 1)3(7) From the expression for f ′′(x) we calculate: f ′′(−1) = 1
2 > 0 and f ′′(1) = −1

2 < 0; hence,there is a minimum at x = −1 and a maximum at x = 1 (compare the results with thoseat page 64).(8) f ′′(x) = 0 ⇒ x ∈ {−
√
3, 0,

√
3}. Bending changes at ±√

3 and 0.
−∞ −

√
3 −1 0 1

√
3 ∞

f ≃ 0 − − − − − 0 + + + + + ≃ 0
f ′ 0 0
f ′′ − 0 + + + 0 − − − 0 +

f ↘ ↘ ↘ min ↗ ↗ ↗ max ↘ ↘ ↘
∩ infl ∪ ∪ ∪ infl ∩ ∩ ∩ infl ∪(9) A convenient scale can be chosen by considering:

f(−1) = −1
2

f(1) = 1
2

f(−
√
3) = −

√
3
4 ≈ −0.43

f(
√
3) =

√
3
4 ≈ 0.43and by taking √

3 ≈ 1.73.1
1Notice that √3 ≈ 1.73, but √3 ̸≃ 1.73.
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(10)

x

y

−
√
3 −1

1
√
3

Practice exercise PE27 Answer page 129Sketch the curves of the following functions:
• f : x 7→ x ln(x)

• g : x 7→ x

ln(x)

• h : x 7→ ex

1 + ex

• j : x 7→ 1

1 + ex

• k : x 7→ ln(x2 + 1)

• l : x 7→ e−x2

Summary of this chapter
The second derivative gives information about the bending of a function and introduces a new
kind of critical point: the inflexion point (a place where, locally, there is no bending).

Analysis deals extensively with fractions that are of the form 0
0 or very close to these un-

defined fractions. The theorem of de l’Hospital produce an extra method for determining such
values when both denominator and numerator are differentiable functions.
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Chapter 13

Applications

In the following exercises, derivatives and antiderivatives will be used. While derivatives arereasonably straightforward to establish, antiderivatives need a bit a backward thinking.
Exercise 113Find the antiderivatives of the following functions:Caution: sometimes the variable is x, sometimes t!

(1) f(x) = ex

(2) g(t) = ea·t

(3) h(t) = b · ea·t

(4) j(x) = sin(a · x)

(5) k(t) = b · cos(a · t)

Exercise 114Sometimes a relation between a function and its derivative is given – the function beingunknown. These are differential equations. They are beyond the scope of this course in theirgeneral form, yet some cases can be solved.Find f(x) (or y when noted) for the following: (Do not forget that if f ′ = g′, then f = g+Kfor K ∈ R)
(1) f ′(x) = f(x)

(2) y′ = a · y

(3) f ′(x) = −f(x)

(4) f ′(x) = −a · f(x)

(5) (with a second derivative!) y′′ = −y
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Population growth with unlimited resources

Suppose you want to find a mathematical formula describing the growth of the population ofa given species (humans, livestock, bacteria, . . . ). Here, for vocabulary reasons, we considerhumans.We build a model using a certain number of assumptions (they could result in an over-simplification of the problem; in which case, we use the model itself to find out more relevantassumptions and rewrite the model). The assumptions we make are:
(1) The average number of children per human being is constant.
(2) The average life span is constant.
(3) The variation in population (i.e., births minus deaths) over a given amount of time isproportional to the population itself (after all, if the population doubles, so do the birthsand deaths).

We write p(t) for the population depending on time (independent variable is noted t not x)and we denote the proportion mentioned above by k. It is the individual growth rate, i.e. theper capita change in population over time; a possible unit of measure could be new individualsper year per capita.
Then we have

p′(t) = k · p(t) (13.1)
This is a differential equation.We know that if k = 1 we have

p′(t) = p(t) (13.2)
then p(t) = et = p′(t) satisfies this property.

Exercise 115Show that for any real number C , the function p(t) = C · et also satisfies (13.2)
Exercise 116Show that C · ekt is also a solution to (13.1)
Practice exercise PE28 Answer page 130In 2020, the world population was estimated to be 7.8 billion and the annual growth rate is
1.05%.Consider time t is in years and t = 0 is year 2020.

(1) Find the formula the expresses the world population with respect to time.
(2) How long will it take to double the world population?
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This solution to the population growth problem has a major flaw: if the population doublesevery 66 years, in 660 years it will have doubled 10 times, which is a 210 = 1024 factor. Thiswould yield a population of around 8 hundred billion people. It seems highly improbable thatthe Earth could support such a population. This model can only be used as an approximationwhen the ecosystem is far from saturated.As a first conclusion, the assumption that the growth rate is constant must be changed. Onepossibility is that he growth rate depends on how big the population is.
Rabbits on an island
Considering a model less dramatic than human population, we look at rabbits on an island. Atfirst they have enough to eat and reproduce freely.But at some point in time, food becomes harder to find, there is not enough space to dig newburrows and the growth rate will decrease, until eventually an equilibrium is reached.

This model is mathematically much more complicated than the previous one. It will not be
possible to show how the solution is found. The solution will be given without proof but all the
other mathematics involved should be understood.

Assume the growth rate per individual depends on the total population size, hence
p′(t) = p(t) · f(p(t)) (13.3)where f(p(t)) is the individual growth rate.Writing p(t) = y we have

y′ = y · f(y)When the population is high, it has inhibitory effects on the growth rate hence we assume
df(y)
dy to be negative.Note that we wrote df(y)

dy as in the chain rule: the variation of f with respect to y not t.
The simplest assumption is to choose a linear function:

f(y) = a− by a, b > 0hence formula (13.3) becomes1
y′ = y(a− by)or

p′(t) = p(t) · (a− b · p(t))When p(t) is small and assuming b < 1, we have p′(t) ≈ p(t) · a where a is the growth rate ifno inhibiting conditions existed.To understand the b coefficient, we rewrite the equation as
1Pierre-François Verhulst (in 1838)
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p′(t) = a · p(t)
( a

b − p(t)
a
b

)
We observe that p′(t) = 0 if p(t) = 0 and also if p(t) = a/b. Then a/b would be the maximumsustainable population and a

b
−p(t)
a
b

is the proportion of that maximum population which has notbeen realised yet.
Rewriting once more with a/b = N :

p′(t) = a · p(t) ·
(
1− p(t)

N

) (13.4)
Exercise 117Check that

p(t) =
N

1 +
(
N−C
C

)
e−at

is a solution to (13.4).
As for the case of population growth with unlimited resources, C is the initial population.

Exercise 118Calculate the following limits (for p as in exercise above):
(1) lim

t→∞
p(t)

(2) lim
t→−∞

p(t)

In this last case, the limit to −∞ would be when the population started.

t

y

NC
This curve is called the logistics curve.It has a major drawback: in order to predict the population growth, one needs to know themaximal possible population. . . but it is a better model than the straightforward exponential.

Epidemic spread
Assume that there is an epidemic of a mild (non-lethal) disease. The epidemic does not lasttoo long so the natural death rates and birth rates can be ignored hence the total populationremains constant.The population is divided into three categories:
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(1) Susceptible (S), those who have not (yet) been ill
(2) Infected (I)
(3) Removed (R) – or Recovered – those who having been infected have cured and are immuneso they do not become sick again.

It is assumed that at the start, nobody is immune, hence R(0) = 0.(It is possible to consider any proportion of the original population to be immune and observethe overall effect of, say, a vaccination.)
This is called the SIR model, and it leads to differential equations impossible to solve with

this course. A very simple model is used here.

Exercise 119The initial population is 10 000 people; we take a unit to be one thousand, hence thepopulation is 10.The number of people who become sick is big at first and decreases to end after 15 weeksby everybody having caught the disease, hence (for t in weeks) we have
S(0) = 10, meaning that for t = 0 nobody is infected nor immune, hence everybody issusceptible to get ill.
S(15) = 0The function is a quadratic. Its only zero is at t = 15.Find the equation of S.Sketch the function S.

Exercise 120The disease lasts one week, hence after one week, people start recovering, until the sixteenthweek, when all have recovered. This implies that R(0) = 0 and R(16) = 10.Moreover, it is assumed that the initial recovery rate is very small (R′(0) = 0) and the finalrecovery rate also satisfies R′(16) = 0.Find the polynomial of lowest degree for R which satisfies these constraints.Sketch the function R.
Exercise 121The infected are those that are not susceptible anymore and have not yet recovered. Forany t, S(t) + I(t) +R(t) = 10The peak of the epidemic is when the number of infected is highest.When is the peak of the epidemic? (in weeks)
Radioactive decay
Radioactivity is the property of some substances to decay by transforming into other substances.The intensity of the decay (i.e., the rate of change of the amount of substance with time) is higherwhen there is more substance: the rate of decay is proportional to the amount of substance.
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Exercise 122Write the equation which expresses the relation given by”the rate of decay is proportional to the amount of substance.”
Exercise 123Write the general equation of decay depending on time.
Exercise 124The half-life is the time it takes for half of the substance to decay. For Carbon-14, thehalf-life is 5.73 years.Find the equation which describes the decay of Carbon-14.Starting with 100g, how much Carbon-14 is left after one year?
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Limits

Consider the step function f : x 7→

{
x+ 1 if x ≥ 0

x if x < 0This function is discontinuous at 0 and if x ≃ 0+ then f(x) ≃ 1 and if x ≃ 0− then f(x) ≃ 0.

The point ⟨0, 0⟩ is not part of the function, yet it is a point of interest for this function since,if one want to draw it, the graph is a straight line open at that point.
Definition 30 A deleted interval around a is an interval, extending on both sides of
a, not containing a.

These and other situations are described by the limit notation.
Limit at a point

Informally: the limit of f at a is the value that f should take in order to be continuous at a.
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Definition 31 (Limit) Let f be defined on a deleted interval around a and x is inthat deleted interval.If there is an observable number L such that
x ≃ a =⇒ f(x) ≃ Lwe say that f has a limit at a and write

lim
x→a

f(x) = L

L is the limit of f at a
Note that by property 4, page 23, if the limit exists, it is unique.Of course, by this definition, f is continuous at a when

lim
x→a

f(x) = f(a)

The definition of limit can also be interpreted in the following way:if f has a limit at a then this limit is the observable neighbour of f(a+ dx).
Practice exercise PE29 Answer page 131Calculate

lim
x→3

2x2 − 7x+ 3

x− 3

Using the limit notation, the derivative of f at a can be rewritten in two different ways
f ′(a) = lim

h→0

f(a+ h)− f(a)

hor
f ′(a) = lim

x→a

f(x)− f(a)

x− a

One sided limits

The function drawn on page 113 is not continuous, but there is also an asymmetry: when x ≃ 0+,then f(x) ≃ f(0), but when x ≃ 0− we have f(x) ̸≃ f(0). This asymmetry is described by onesided continuity (see definition 10, page 34) and leads to the concept of one sided limit.
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Definition 32 The function f has a limit on the left of a if there is an observablenumber L such that
x ≃ a− =⇒ f(x) ≃ Land write

lim
x→a−

f(x) = L

The function f has a limit on the right of a if there is an observable number L suchthat
x ≃ a+ ⇒ f(x) ≃ Land write

lim
x→a+

f(x) = L

If lim
x→a−

f(x) = lim
x→a+

f(x) = L then lim
x→a

f(x) = L.(If the limit on the left and limit on the right are the same, then it is the limit.)
Practice exercise PE30 Answer page 131Consider the signum function sgn, defined by

sgn : x 7→


−1 if x < 0

0 if x = 0

+1 if x > 0

Does sgn have a limit at 0?
limit at infinity
The hyperbola, given by g : x 7→ 1

x has a vertical asymptote at x = 0 which is not part of thefunction, yet it is a point of interest for this function.Also the fact that it has a horizontal asymptote at y = 0 leads us to define limits ”at infinity”.
Asymptotic behaviour can be rewritten using the limit notation and the ∞ sign.
f has a horizontal asymptote at l, on the right if

lim
x→∞

f(x) = l

f has a horizontal asymptote at l, on the left if
lim

x→−∞
f(x) = l

f has a vertical asymptote at a, on the right if
lim

x→a+
f(x) = ±∞

f has a vertical asymptote at a, on the left if
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lim
x→a−

f(x) = ±∞

△! The fact the we write the the limit is equal to infinity does not mean that it reachesinfinity – which it does not. For the formal definition of asymptotes, see chapter 3, page 27.
Exercise 125Calculate the following limits. The answer should be a number, +∞, −∞ or ”does not exist”

(1) lim
x→∞

6x− 4

2x+ 5(2) lim
x→∞

x3 − 10x2 − 6x− 2

(3) lim
x→∞

x2 − x+ 4

3x2 + 2x− 3

(4) lim
x→∞

√
x+ 2√
3x+ 1(5) lim

x→∞
x−

√
x

(6) lim
x→∞

3
√
x+ 2

(7) lim
x→0−

1 +
1

x

(8) lim
x→0

1

x2
− 1

x

(9) lim
x→0

1 + 2x−1

7 + x−1 − 5x−2

(10) lim
x→2

1− x

2− x

(11) lim
x→3+

x+ 1

(x− 2)(x− 3)

(12) lim
x→3

x+ 1

(x− 2)(x− 3)

(13) lim
x→1

3x2 + 4

x2 + x− 2

(14) lim
x→2+

x2 + 4

x2 − 4

(15) lim
x→∞

√
x2 + 1− x

(16) lim
x→−∞

√
x2 + 1− x

(17) lim
x→∞

√
x2 − 3x+ 2−

√
x2 + 1

(18) lim
x→∞

3
√
x+ 4− 3

√
x

Integration to infinity

Definition 33 The ∞ symbol in the bounds of an integral indicates a limit.∫ ∞

a
f(x) · dx = lim

N→∞

∫ N

a
f(x) · dx

This is calculated by taking ultralarge N in ∫ N
a and taking the observable part of the result(if it exists and is independent of N ).
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Exercise 126Check that the derivative of x 7→ x

x+ 1
is x 7→ 1

(x+ 1)2Sketch the curve of f : x 7→ 1

(x+ 1)2
for x > 0Calculate the area under f between 0 and 10.Calculate the area under f between 0 and +∞

Definition 34 If the function to integrate is not defined at the lower bound, then∫ b

a
f(x) · dx = lim

u→a+

∫ b

u
f(x) · dx

Similarly, if the function to integrate is not defined at the upper bound, then∫ b

a
f(x) · dx = lim

u→b−

∫ u

a
f(x) · dx

Exercise 127Evaluate the integrals (after specifying the domain of the function):
(1) ∫ 1

0
2x−2 · dx

(2) ∫ 3

−2
u−3 · du

(3) ∫ 2

−1
−5(t+ 1)−1/4 · dt

(4) ∫ 4

0

1

2
√
x
· dx

Summary of this chapter
The limit of a function at a point, gives the value – if it exists – which would make the function
continuous at that point.

When the limit of a function exists, both the limit on the left and the limit on the right exist,
and they are equal.

The limit at infinity, or a limit at a point being infinite describe asymptotic behaviours.
Integration to infinity or integration to the edge of an open interval are defined as limits.
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Chapter 15

Answers to practice exercises

Answer to practice exercise PE1, page 7Assume there is a fraction equal to √
2. Then there is a (positive) fraction in simple formsuch that a

b =
√
2.Then a2

b2
= 2 ⇒ a2 = 2b2 so a2 is even.(We let the reader check that, for natural number n, n2 is even if and only if n is even.)Hence a is even. Rewrite a = 2k then a2 = 4k2 = 2b2, hence b2 = 2k2 so b is also even,which contradicts that a

b was in simple form.
Answer to practice exercise PE2, page 11Think of δ being so small that it can only by seen with a microscope. It could be the size ofa bacterium.

(1) δ2 is even tinier and the important thing here is that it remains microscopically tiny. 1If a bacterium can be seen with a microscope, then one still needs a microscope to see twobacteria. So 2 · δ is also tiny.Since δ has been assumed to be positive and tiny, −δ is negative, and also tiny.Tiny numbers are extremely close to zero on both sides.
Note that tiny is not the same as small. In mathematics, when numbers are drawn on aline, from left to right, “a is smaller than b” means “a is to the left of b”. Here, we use theword “tiny” in an informal way to express closeness to zero.
−10 is smaller than 0.0000000000002 but this last number is tinier than −10

(2) 2 + δ and 2 − δ are “bacterially close” to 2 and it would require the same microscope tosee the difference.They are both extremely close to 2

(3) Just as “smaller” is mathematically defined as being to the left on the numeric line, “larger”is defined as being to the right. To express the idea of being far from zero on either side,we use the word “huge”.
1If δ is tiny, the its absolute value is less than 1, hence δ2 is closer to zero still.
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Answer to practice exercise PE3, page 11Instead of microscopes, this time think of telescopes. . .(1) The argument is similar to the previous exercise: N2, 2 ·N and −N are all huge.(2) N + 2 and N − 2 are not far from N but not extremely close (the difference is 2 which isnot tiny).With the δ defined in the previous exercise, N + δ is extremely close to N .(3) One divided by a big number is small. So one divided by a huge number is tiny.(4) N
2 is still huge. If you need a telescope to see a planet which is a huge distance away,even half way is still huge.

Answer to practice exercise PE4, page 11Since a < b we have a− b < 0 and b− a > 0.
(1) Not tiny divided by tiny is huge. Since a > 0 then a

a− b
=

positive not tinynegative tiny is a hugenegative number.
(2) a

b− a
is a huge positive number.

(3) A tiny number divided by a not tiny number is tiny. So b− a

a
is tiny and positive.

(4) a− b

a
is tiny and negative.

(5) b− a

a− b
= −1

Answer to practice exercise PE5, page 12The definition states that for each element of the input set there is one and only one corre-sponding element of the output set.The condition on the input set and the condition on the output set must both be satisfied. Hencea relation is not a function if one of the conditions fails.If one (at least one) input does not correspond to an output ore corresponds to more than oneoutput, then it is not a function.For Example, if the input set is {Berlin,Budapest, London, Paris, V ienna}, and the outputset is {Austria,Germany,Hungary,England, United States}, the relation is the Capital ofis not a function, since the element Paris of the input set is not associated to any elements ofthe output set.
△! Note that the fact that the element United States is not associatedto any elements of the input set does not prevent the relation from being afunction.Now, consider the relation is a multiple of between the input set {8, 25, 27, 49} and theoutput set {2, 3, 5, 7, 9}. Again, this relation is not a function, since the element 27 of the inputset is associated to more than one element of the output set (namely, 3 and 9).
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Answer to practice exercise PE6, page 14This is the well known parabola:

(1) The horizontal line will be as follows:
1

1 + δ 1 + 2δ1− δ1− 2δ

For the vertical values, we establish a table of values:
x f(x) = x2

1− δ (1− δ)2 = 1− 2δ + δ21 1
1 + δ (1 + δ)2 = 1 + 2δ + δ2

Now consider that if δ is 1
100 , then δ2 is one hundred times smaller, which means that it isalmost impossible to distinguish from zero. Things are even more invisible if δ is smaller,hence on the drawing, we cannot distinguish, say, 1 + 2δ from 1 + 2δ + δ2

−1 + δ−1− δ

1 + δ

1 + 2δ

1− δ

1− 2δ

You may also imagine a zoom on a computer screen, the curve seems straighter when youzoom more, until the difference between the actual curve and the straight line is less thana computer screen pixel.
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(2) The table of values is as follows:
x f(x) = x2

−1− 2δ (−1− 2δ)2 = 1 + 4δ + 4δ2

−1− δ (−1− δ)2 = 1 + 2δ + δ2-1 1
−1 + δ (−1 + δ)2 = 1− 2δ + δ2

−1 + 2δ (−1 + 2δ)2 = 1− 4δ + 4δ2

and the curve is:

−1 + δ−1− δ

1 + δ

1 + 2δ

1− δ

1− 2δ

Even though the parabola is a curve, a close up shows a line indistinguishable from a straightline. Of course it is not the same straight line when one zooms on different points.
Answer to practice exercise PE7, page 14

(1)
x f(x) = |x|

−2δ 2δ-δ δ
0 0
δ δ

2δ 2δ

−2δ 2δδ−δ

δ

2δ

This time, the “pointed” part remains pointed even after a zoom.
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Answer to practice exercise PE8, page 14
x

−2δ −1-δ −1
0 −1
δ 1

2δ 1

−2δ 2δδ−δ

1

−1

Note that for x = 0, the value is -1, not 1 (and not both values). This is symbolised by afull circle where the value is included (closed interval), and a semi-circle where the value is notincluded (open interval).This function has a step at zero.
Answer to practice exercise PE9, page 22

(1) Let x = N be ultralarge, and y = N + 1
N so x ≃ y but x2 = N2 ̸≃ N2 + 2 + 1

N2 = y2(2) Let h be ultrasmall, then let x = h and y = h2. Then x ≃ 0 and y ≃ 0 hence x ≃ y. Then
1
h and 1

h2 are both ultralarge and 1
h2 − 1

h = 1
h(

1
h − 1). By ultracomputation (page 21), thisis ultralarge, hence 1

x ̸≃ 1
y

Answer to practice exercise PE10, page 22
(1) As 1

ε is ultralarge 1 + 1
ε is ultralarge.

(2) We have √
δ
δ = 1√

δ
which is ultralarge.(If δ < c for any observable c, then √

δ <
√
c and √

δ ≃ 0 hence 1√
δ

is ultralarge.)
(3) Maybe surprisingly, this is ultrasmall. To see this we multiply and divide by the conjugate:

√
H + 1−

√
H − 1 =

(
√
H + 1−

√
H − 1)(

√
H + 1 +

√
H − 1)√

H + 1 +
√
H − 1

=
(H + 1)− (H − 1)√
H + 1 +

√
H − 1

=
2√

H + 1 +
√
H − 1

H is assumed positive, its square root is also a positive ultralarge. The sum of 2 positiveultralarge numbers is ultralarge hence the quotient is ultrasmall.
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(4) H +K

HK
=

1

K
+

1

H
is ultrasmall.

(5) 5 + ε

7 + δ
− 5

7
=

35 + 7ε− 35− 5δ

49 + 7δ
=

≃0︷ ︸︸ ︷
7ε− 5δ

49 + 7δ︸ ︷︷ ︸
≃49

is ultrasmall or zero.

(6)
≃−1︷ ︸︸ ︷√

1 + ε− 2√
1 + δ︸ ︷︷ ︸
≃1

≃ −1, hence not ultralarge and not ultrasmall.
Answer to practice exercise PE11, page 22

(1) Take ε = δ then ε

δ
= 1

(2) Take δ = ε2, then ε

δ
=

1

ε
is ultralarge.

(3) Take ε = δ2, then ε

δ
= δ is ultrasmall.

Answer to practice exercise PE12, page 32Vertical asymptote of the form x = c, horizontal asymptote of the form y = b, obliqueasymptote of the form y = ax+ b.
(1) y = x(2) y = 1, x = 0, x = 4/3

(3) {
y = x if x > 0

y = −x if x < 0

(4) y =
√
1/3, x = 4

√
1/3

(5) {
y = 0 if x < 0

y = 1 if x > 0

Answer to practice exercise PE13, page 43
(1) 10
(2) -70

(3) 10
(4) 20

Answer to practice exercise PE14, page 43Assuming f is defined around x, we write
f(x+ dx) = (x+ dx)2 + 3(x+ dx) = x2 + 2x · dx+ dx2 + 3x+ 3dxthen

f(x+ dx)− f(x) = 2x · dx+ dx2 + 3dxdivide by dx

f(x+ dx)− f(x)

dx
= 2x+ dx+ 3 ≃ 2x+ 3
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Answer to practice exercise PE15, page 43
(1)

(x+ dx)2 − x2

dx
=

x2 + 2x · dx+ dx2 − x2

dx
= 2x+ dx ≃ 2x

(2)
(x+ dx)3 − x3

dx
=

x3 + 3x2dx+ 3x · dx2 + dx3 − x3

dx
= 3x2 + 3x · dx+ dx2

the quantity dx2 is ultrasmall. But for 3x · dx we need to recall property 2 (1), whichstates that an observable multiplied by an ultrasmall is is equal to an ultrasmall. x isobservable since we are differentiating at that point (it is a parameter of the formula) and
dx is ultrasmall.Hence we can conclude

3x2 + 3x · dx+ dx2 ≃ 3x2

Answer to practice exercise PE16, page 58
(1) f ′(x) = 20x3 + 3x2 − 4x

(2) g′(x) = 10
√
3x

(3) h′(x) = −x4 + 4x3 − 3x2 + 10x+ 10

(x3 − 5)2

(4) j′(x) = 20x3 − 6x− 2

(3x2 − 2x+ π)2

(5) k′(x) = 0

(6) l′(x) = − 1

x2
− 2

x3
− 3

x4
− 4

x5

(7) m′(x) =
(x2 + x+ 1)(3x2 + 2x)− (x3 + x2)(2x+ 1)

(x2 + x+ 1)2
=

x(x3 + 2x2 + 4x+ 2)

(x2 + x+ 1)2

Answer to practice exercise PE17, page 59
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-2 3

-15

15

Answer to practice exercise PE18, page 59
Tangent line is y = −4

5
x+

27

5

-5 10

-5

7

Answer to practice exercise PE19, page 59
(1) 3x2 + 2x+ 2

(2) −3x2 + 4x− 2

(3) x2 − 5x+ 6

(4) (x− 2)2

(5) x(x+ 4)

(x+ 2)2

(6) x2 + 2x− 8

(x+ 1)2
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(7) 4x2 + 4x− 3

(2x+ 1)2

(8) −x2 + 6x+ 5

(x+ 3)2

(9)

1 if x > 2

−1 if x < 2not differentiable if x = 2

(10)

x(x+ 4)

(x+ 2)2
if x ≥ 0

−x(x− 4)

(x− 2)2
if x ≤ 0

(11) x2 + 2x+ 2

(x+ 1)2

(12)

3x2 − 12x+ 11 if x ∈]1, 2[∪]3,∞[

−3x2 + 12x− 11 if x ∈]−∞, 1[∪]2, 3[not differentiable if x ∈ {1, 2, 3}

Answer to practice exercise PE20, page 60
f(x) = x

(
1

3
x2 +

7

2
x+ 12

)
S = {0}
f ′(x) = x2 + 7x+ 12 = (x+ 3)(x+ 4)
S ′ = {−3,−4}

x

y

-10 -5 0 5

-15

-10

-5

0

5
−3

−13.5

−4

−13.333

Answer to practice exercise PE21, page 60
(1) ta : x 7→ −12x− 3

(2) tb : x 7→ 5

7
x− 2

7
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Answer to practice exercise PE22, page 64
(f1)

x

y

(f2)
x

y

(f3)
x

y

(f4)
x

y

(f5)
x

y

(f6)
x

y

Answer to practice exercise PE23, page 80
(1) 1 Use x = 1− u2

(2) undefined – for u > 1 we have the squareroot of a negative number.
(3) 8(

√
2+1)
15 Use u = 1 +

√
x

(4) 50
309 Use u = t2 + 3

(5) 195
8 Use u = x2 + 2

(6) 2
45 Use u = 4− x3

(7) −
√
6 + 2

√
2 Use u = 1 + 1

t

Answer to practice exercise PE24, page 80(Integration constant to be added)
• Fa : x 7→ x5 − x2 + 4x

• Fb : x 7→ 1

4
x4 − 5

3
x3 +

3

2
x2 − 2x

• Fc : x 7→ x2 − x

• Fd : x 7→ 1

4
x5 − 1

4
x3 +

5

4
x2 +

3

2
x

• Fe : x 7→ x2 + x+
1

x

• Ff : x 7→ 3x− 2

x
+

5

2x2

• Fg : x 7→ x4

4
− 1

x

• Fh : x 7→ 3

4

3
√
x4 +

3

2

3
√
x2

• Fi : x 7→ 2
√
x+

2

3

√
x3

• Fj : x 7→ 1

3
(x+ 1)3

• Fk : x 7→ (3x− 2)5
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• Fl : x 7→ 1

8
(2x+ 1)4

• Fm : x 7→ − 1

12
(3− x)12

• Fn : x 7→ − 1

20
(3− 4x)5

• Fo : x 7→ 2

9

√
(3x− 2)3

• Fp : x 7→ 2
√
x− 1

• Fq : x 7→ −1

3
(3− x2)6

• Fr : x 7→ 1

5
(x2 − 3x+ 1)5

• Fs : x 7→ 1

3
(x3 − 2x2 + x− 3)3

• Ft : x 7→ 2

3
(4x2 − 5x)3

• Fu : x 7→ 1

8
(3x2 − 2x+ 5)4

• Fv : x 7→ − 1

x2 + 1

• Fw : x 7→ − 1

x2 + x+ 3

• Fx : x 7→ 1

3

√
(x2 + 1)3

• Fy : x 7→ 2
√
9 + x3

• Fz : x 7→ 2

3
(x3 + x+ 2)

√
x3 + x+ 2

Answer to practice exercise PE25, page 95If u = t
a (t and u being variables, a is a constant) we have du = dt · a.If t = a we have u = a

a = 1 and if u = a · b we have u = t
a = a·b

a = bReplacing each term we get
∫ a·b

a

1

t
=

∫ b

1

1

a · u
a · du =

∫ b

1

1

u
du

Answer to practice exercise PE26, page 103
(1) 1/6

(2) 1/16

(3) 0

(4) −1/4

(5) 1/2

(6) −1

(7) 5

(8) ultralarge
(9) 2

Answer to practice exercise PE27, page 106
(g1)

x

y

(g2)
x

y

(g3)

x

y
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(g4)
x

y

(g5)
x

y

(g6)
x

y

Answer to practice exercise PE28, page 108
(1) We check that p(t) = C · ekt is a solution to

p′(t) = k · p(t)

(for constants C and k to be found).
p′(t) = (C · ekt)′ = C · (ekt)′ = C · k · ektby the chain rule applied to ektNote that

C · k · ekt = k · p(t)so this function is indeed a solution for the population growth problem.
If t = 0, the population is 7.8 billion or 7.8 · 109This is called an initial condition.
p(0) = C · ek·0 = C · e0 = C hence C = 7.8 · 109If t = 1 (one year later) the population has increased by 1.05% hence is then 7.8819 · 109

p(1) = C · ek = C + C · 1.05% = C · (1 + 1.05%) = C · 1.0105

Note that it is possible to divide both sides by C: the only thing that influences k is theannual rate of change: 1.05%We therefore have ek = 1.0105To find k we use the inverse function of the exponential and k = ln(1.0105)Hence the final formula is
p(t) = 7.8 · 109 · eln(1.0105)t

which simplifies to
p(t) = 7.8 · 109 · 1.0105t

(2) The doubling time requires to solve
p(t) = C · 1.0105t = 2 · C

Again, dividing both sides by C , we need to solve
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1.0105t = 2

Using logarithms again to find the exponent:
ln(1.0105t) = ln(2)

hence
t · ln(1.0105) = ln(2)which leads to t = ln(2)

ln(1.0105) ≈ 66.36If the rate of change remains constant, the world population will double approximatelyevery 66 years
Answer to practice exercise PE29, page 114

lim
x→3

2x2 − 7x+ 3

x− 3

limx → 3 means that we take x ≃ 3 and write x = 3 + dx

2 · (3 + dx)2 − 7 · (3 + dx) + 3

3 + dx− 3
=

5dx+ 2dx2

dx
= 5 + 2dx ≃ 5

hence
lim
x→3

2x2 − 7x+ 3

x− 3
= 5

(Notice that the limit is equal to 5 and not ultraclose. The limit is the value that theexpression is ultraclose to.)The expression
lim
x→3

2x2 − 7x+ 3

x− 3is equivalent to
lim
h→0

2 · (3 + h)2 − 7 · (3 + h) + 3

h

Answer to practice exercise PE30, page 115
sgn : x 7→


−1 if x < 0

0 if x = 0

+1 if x > 0

lim
x→0−

sgn(x) = −1 ̸= sgn(0) and lim
x→0+

sgn(x) = 1 ̸= sgn(0)so not only are the limits not equal to the value of the function, but they are different on theleft and on the right. Hence sgn is not continuous at 0
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