
Construction of Number SystemsIncluding Ultralarge and Ultrasmall Numbers
Richard O’Donovan
December 11, 2022

This paper examines how one goes from extra axioms about sets to extraproperties of real numbers. The classical construction of real numbers is as-sumed and the proof that all sets of real numbers bounded above have a leastupper bound being a proof of classical mathematics will not be given here butcan be found in [4] and [5]. (1)For a fuller discussion of these axioms, see [3], and for the fact that theydo not introduce contradictions, see [2] (downloadable here). This last paperdeals with model theory.These axioms about set theory were specifically designed to produce re-sults such as the existence of ultralarge and ultrasmall numbers, the existenceof the observable neighbour and closure.
1 Principles of Analysis with Ultrasmall Numbers
The axioms of set theory are denoted by ZFC (Zermelo and Fraenkel with axiomof choice) as given in [1]. Three axioms are added: Idealisation, Transfer andStandardisation.Idealisation is used to show the existence of ultrasmall and ultralargenumbers.Transfer yields the closure principle.Standardisation produces the observable neighbour principle.
Definition 1. The context(2) of a property, function or set, is the list of param-
eters used in its definition.

The word ”observable” always refers to a context.

The context can be a single parameter or even empty.
(1)The fact that these extra axioms do not introduce contradictions in set theory is treatedin [2] and belongs to model theory.(2)In pedagogical approaches, the concepts of context and observability are sometimes merged– for the sake of introducing one word less.
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Observability Principle

• Every set is observable relative to its own context.
• ∅ is observable relative to every context.
• Two sets a and b will always have a common context. If a is notobservable in the context of b, then b is observable in the context of a.If a set is observable relative to every context, we say that it is alwaysobservable.In the following, C refers to the context and ∀CA means: for any observ-able A.

Idealisation:For P being a property not referring to observability:
(∀x)(∀CA)[(∀Ca ∈ PfinA)(∃y)(∀x ∈ a) P(x, y,A, x)

↔ (∃y)(∀Cx ∈ A)P(x, y,A, x)]

This reads:
IF: for any list of variables, xi, for any observable A, for any observable

finite subset a of A, there is a y such that for any x in a, the property P
(referring to the list of xi, x, y and a) holds
THEN there is a y such that the property holds for all observable x in ARewritten with less variables:

IdealisationGiven a set A and a property P not referring to observability.If for every observable finite subset a of A there is a y such that theproperty P (x, y,A) holds for every x ∈ a, then there is a y such that
P (x, y,A) holds for every observable x ∈ A.

Theorem 1 (Existence of non observable numbers). There exist natural num-
bers which are not observable.

Proof. The set A used in the idealisation principle is N.The property not referring to observability is “y ∈ N and y > x”.For every finite observable subset B ⊂ N, there is a y such that for every
x ∈ B, the property “y ∈ N and y > x” holds (take y = max{B}+ 1)Hence, by idealisation, there is a y such that “y ∈ N and y > x” holds forall observable x ∈ N. Obviously, this y cannot be observable.

If we restrict B to sets defined without reference to observability, we getthat there are natural numbers which are not always observable. If we thenintroduce such a number in the definition of B (such as all finite sets containing
k), we get numbers which are less observable still.
Transfer:For P(x1, . . . , xk) is any statement not referring to observability.

(∀C)(∀Cx1) . . . (∀Cxk) (PC(x1, . . . , xk) ↔ P(x1, . . . , xk))
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This reads:
For any context, if a statement holds when all variables are observable,

then the statement holds for all values of the variables.

Theorem 2. Closure
If there is an x such that P (x), then there is an observable x such that P (x).

Proof. Assume that P(x) is a statement not referring to observability and
(∃x) P(x) holds. By Transfer then also (∃Cx) PC(x) holds. Fix x such that
x is observable and PC(x) holds. By Transfer once more, the statement P(x)holds as well, and therefore we conclude that (∃Cx) P(x).

Closure – contrapositive formIf P (x) holds for all observable x, then it holds for all x.
If it did not hold for some x, then it would not hold for some observable xand we assume the contrary.Consequence: it two observable sets contain the same observable elements,then they are the same sets.

Standardization:

(∀C)(∀x)(∀x)(∃Cy)(∀Cz)(z ∈ y ↔ z ∈ x ∧ P(z, x, x;C))

where P(z, x, x;C) is any statement referring to the context or not referringto observability.
This reads:
For any context, for any list of variables xi, for any x, there is an observable

set y such that for any z, this z belongs to y iff it belongs to x and satisfies
a given property P .In reduced form:

Standardisation Consider a context and a set B which is not observ-able.Then there is an observable set A such that all observable elementsof B are exactly the observable members of A.
Note that if B contains no observable number, then A = ∅

Theorem 3. The standardisation of a set is unique.

Proof. Assume there are two standardisations A and B of a set C . A and Bhave same observability and contain the same observable elements, hence byclosure all their elements are the same.
Definition 2 (Ultralarge numbers). Relative to a context; if a number is greater
in absolute value than any observable number, then it is ultralarge.

Definition 3 (Ultrasmall numbers). Relative to a context; if a number is smaller
in absolute value than any non zero observable number, then it is ultrasmall.
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Theorem 4 (Observable neighbour). If x is not ultralarge, then there is a
unique observable real number a and h ≃ 0 such x = a+ h.

Note that h ≃ 0 stands for h is ultrasmall or zero (ultraclose to zero).
Proof. Fix a context and a real number x not ultralarge (not necessarily in thecontext). Wlog assume x > 0. Consider the set B = {u ∈ R | u ≤ x}. (thecontext of this set is given by k). This set has a unique standardisation A(not empty since it contains 0) and is bounded above by an observable numbersince x is not ultralarge. Therefore A has a least upper bound a – which isobservable (by closure).We now show that x ≃ a, so a is the observable neighbour of x.If not, then |a− x| > s > 0 for some observable s. This means that either
x > a+s or x < a−s. In the first case, a+s ∈ A, contradicting a = supA. Inthe second case, a−s is an upper bound on A, again contradicting a = supA.We now show that x ≃ a. A contains all observable elements of BIf not, then for some positive observable s either x > a + s or x < a − s.In the first case, since a + s is observable and in B, we have a + s ∈ A,contradicting a = supA.In the second case, a − s is an upper bound on A, again contradicting
a = supA.
Theorem 5. Let n be an integer; if n is not observable, then n is ultralarge.

Proof. Assume that n is not ultralarge. By the Observable Neighbour Princi-ple, there is an observable r such that n ≃ r. But n is the unique integer inthe interval [r− 0.5, r+0.5), hence n is observable by Closure, contradictingour assumption.
This can be rephrased:

Theorem 6. If k, n ∈ N, k ≤ n, and n is observable, then k is observable.

Theorem 7. If A is an observable finite set, then each element of A is observ-
able.

Proof. To say that A is finite means that there is a sequence ⟨a1, . . . , an⟩,
n ∈ N, such that A = {a1, . . . , an}. This is a statement with parameter A. ByClosure, there is an observable sequence with this property. The number n isuniquely determined by the sequence (it is the largest element of its domain);hence it is also observable. By theorem 6, every i ≤ n is observable. Therefore,for any i, ai, the unique value of the sequence at i, is observable.
Theorem 8. If an observable set contains non observable elements, then it is
an infinite set.

This is simply the contrapositive of theorem 7 and the example we havealready seen is that N is always observable and yet contains nonobservableitems and is, of course, infinite.
Lemma 1. Let a ∈ Q.

1
a is as observable as a
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Proof. The context is given by a. Since there is a number equal to 1
a , byclosure, there is an observable such number. And by uniqueness of the result,

1
a is observable.
Theorem 9. Relative to some context; if M ∈ N is ultralarge, then 1

M is an
ultrasmall rational number.

Proof. Assume, for a contradiction, that 1
M is not ultrasmall i.e., there is arational observable non zero a such that 0 < a < 1

M . But then 1
a > Mso there would be an observable number greater than an ultralarge naturalnumber: a contradiction.

The existence of ultrasmall and ultralarge real numbers is an immediateconsequence of their existence in Q.
Internal or standard view?A question sometimes asked about these ultralarge and ultrasmall numbersis whether they are the same numbers as the ones used by those who donot use the concept of observability. We first stress that this question is notmathematical but philosophical.The internal view is that they are the same.The standard view is that idealisation produces new objects.The question is about a philosophical interpretation of “then there exists”.In the proof that in N there exists ultralarge numbers, it can be interpreted as“there already exists” (internal view) or “now there also exist” (standard view).Whichever view is adopted, the mathematics are the same.For teaching analysis at introductory level, there is no conflicting point ofview: it is all new, hence the internal view can be favoured. For the trainedmathematician, the standard view is sometimes more comfortable.
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