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These notes present the theory of generalized Riemann integral, due to R.
Henstock and J. Kurzweil, from a nonstandard point of view. The key notion
we use, that of a-ultrasmall numbers, is due to B. Benninghofen and M. M.
Richter, A general theory of superinfinitesimals, Fund. Math. 123: 199–215,
1987, who call them “superinfinitesimals.” E. Gordon, Nonstandard Methods
in Commutative Harmonic Analysis, Amer. Math. Society, 1997, developed an
approach to relative standardness that is different from that of Y. Péraire; in
particular, his relative infinitesimals are the superinfinitesimals. Here we have
combined the two techniques. B. Benninghofen presented an approach to the
generalized Riemann integral using superinfinitesimals in Superinfinitesimals
and the calculus of the generalized Riemann integral, in Models and Sets, G. H.
Müller and M. M. Richter, eds., Lecture Notes in Math. 1103, Springer, Berlin,
1984, pp. 9 - 52. Our development of the generalized Riemann integral follows
the excellent exposition in R. Bartle, A Modern Theory of Integration, Amer.
Math. Society, 2001, to which the reader is referred for further study of this
topic.

AUN refers to K. Hrbacek, O. Lessmann and R. O’Donovan,“Analysis with
Ultrasmall Numbers.”



1 a-Ultrasmall Numbers

The fundamental problem of calculus is to determine the function f from its
derivative f ′. In AUN, Chapter 4 we solved this problem under the assumption
that f ′ is continuous; that is, we learned to integrate continuous functions.
In AUN, Chapter 9 the theory of integration is developed for a larger class
of functions, those that are Riemann integrable. Among Riemann integrable
functions there are some that are not continuous, yet it turns out that the
Riemann integrable functions are precisely those functions that are continuous
“almost everywhere” (see Theorem 31). Because of this and other reasons,
Riemann theory is not sufficiently general for many applications in analysis.

In order to see how to go about formulating a general theory of integration,
let us revisit the procedure used in AUN, Section 4.1 to recover the original
function f from its derivative. The assumption of continuity of f ′ allowed us to
use the uniform version of the increment equation, with dx ultrasmall relative to
f , independent of xi. This in turn motivated the definition of Riemann integral
in terms of fine partitions, that is, partitions where each dxi is ultrasmall relative
to f , independent of the tag ti. Without the assumption of continuity of f ′,
the increment equation requires dxi to be ultrasmall relative to f and xi. This
suggests the following definition:

A tagged partition (P, T ) is superfine (relative to the level of f) if each dxi
is ultrasmall relative to f and ti.

It is an easy exercise to verify that most of the arguments in AUN, Chapter 9
would go through if one would replace “fine partitions” by “superfine partitions”
in the definition of the Riemann integral. The class of integrable functions would
become much larger and, in particular, the fundamental theorem of calculus
would hold for all differentiable functions.

Unfortunately, in our framework for relative analysis it is not possible to
prove that any partitions superfine in this strong sense exist. (See KH, Relative
set theory: Some external issues, Journ. Logic and Analysis 2:8, 2010, 1–37.)
The strong version of stability, as well as of other principles, postulated in our
theory requires numbers ultrasmall relative to a given context to be too small to
make up a superfine partition. There is a coarser notion of ultrasmall numbers
that does not have such nice uniform properties, and therefore is not as suitable
for development of analysis in general, but is tailor-made for the special purpose
of generalizing the theory of integration. We develop this notion in the rest of
the current section and return to generalized Riemann integral in Sections 2
and 3.

Several arguments in these notes use the Principle of Idealization discussed
in the Appendix to AUN. The readers should take a look at this material before
proceeding further, or as needed.

Definition 1
Given a context and a real number a:

(1) A real number r is a-accessible if r = ϕ(a) for some observable function
ϕ : R→ R.

(2) A real number x is a-ultralarge if |x| > r for all a-accessible r > 0.

(3) A real number h 6= 0 is a-ultrasmall if |h| ≤ r for all a-accessible r > 0.
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Remark a-accessible, a-ultrasmall and a-ultralarge are external concepts,
and the conventions from AUN, Section 1.5 apply to them.

We say that a function ϕ is positive if ϕ(x) > 0 for all x in its domain. It
follows immediately from these definitions that x is not a-ultralarge if and only
if |x| ≤ ϕ(a) for some observable positive ϕ : R→ R, and h 6= 0 is a-ultrasmall
if and only if |h| ≤ ϕ(a) for all observable positive ϕ : R→ R.

We also note that the above statements remain true if one requires only that
ϕ be defined at a, in place of being defined on all of R: if ϕ is any observable
positive function defined at a, then ϕ : R→ R defined by

ϕ(x) =

{
ϕ(x) if defined,

1 otherwise,

is an observable positive function defined for all x, and ϕ(a) = ϕ(a).

Theorem 1
(1) If r is a-accessible relative to p1, . . . , pk, then r is observable relative to

a, p1, . . . , pk.

(2) If h is a-ultrasmall relative to p1, . . . , pk, then h is ultrasmall relative to
p1, . . . , pk.

(3) If h is ultrasmall relative to a, p1, . . . , pk, then h is a-ultrasmall relative to
p1, . . . , pk.

Proof:

(1) If ϕ is observable relative to p1, . . . , pk, then ϕ(a) is observable relative to
a, p1, . . . , pk by Closure.

(2) For an observable r > 0 let ϕr be the constant function with value r,
ϕr : x 7→ r for all x ∈ R. Then ϕr is an observable positive function.
Hence by definition we have |h| ≤ ϕr(a) = r, which shows that h is
ultrasmall.

(3) follows from (1).

�

If |h| < ϕ(a) for all observable positive ϕ, then in particular |h| < |a|
n for

any observable n, hence h is of the form δ · a for some δ ' 0.
It is clear that if a is observable relative to p1, . . . , pk, then h is a-ultrasmall if

and only if h is ultrasmall. In particular h is not observable relative to p1, . . . , pk.
The important fact is that if a is not observable relative to p1, . . . , pk, then
numbers a-ultrasmall relative to p1, . . . , pk can actually be observable relative
to a, p1, . . . , pk, as we prove in the following theorem.

Theorem 2
For any real number a not observable relative to p1, . . . , pk there are some num-
bers a-ultrasmall relative to p1, . . . , pk and observable relative to a, p1, . . . , pk.
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Proof: We use the Idealization Principle. Let {ϕ1, . . . , ϕk} be a finite set of pos-
itive functions, observable relative to p1, . . . , pk. Then h = min(ϕ1(a), . . . , ϕk(a))
> 0 and h is observable relative to a, p1, . . . , pk. In other words, there exists
h > 0 observable relative to a, p1, . . . , pk such that h ≤ ϕi(a) for i = 1, . . . , k.
By Idealization, there exists h > 0 observable relative to a, p1, . . . , pk such that
h ≤ ϕ(a) holds for all positive functions observable relative to p1, . . . , pk; any
such h is a-ultrasmall relative to p1, . . . , pk. �

Exercise 1 (Answer page 33)
Show the following statements.

(1) If r and s are a-accessible, then r±s, r ·s and r/s (if s 6= 0) are a-accessible.

(2) If x and y are not a-ultralarge, then x± y and x · y are not a-ultralarge.

(3) If h, k are a-ultrasmall and x is not a-ultralarge, then h ± k and x · h are
a-ultrasmall or 0.

We need a version of the Closure Principle for a-accessible numbers.

Theorem 3 (a-Closure Principle)
Given a statement P(y, a, b, p1, . . . , pk) of traditional mathematics, and a, b such
that b is a-accessible relative to a given context, where p1, . . . , pk are observable:
If there exists a number y for which the statement is true, then there exists an
a-accessible number y for which the statement is true.

Proof: Let b = ϕ(a), for an observable ϕ : R→ R. We consider the statement
P(y, x, ϕ(x)) with variable x. Let ψ : R → R be a function such that, for all
x ∈ R, if there is some y for which P(y, x, ϕ(x)) is true, then ψ(x) is one such y,
i.e., P(ψ(x), x, ϕ(x)) holds. We omit the detailed justification of the existence
of such a function (it follows easily from the axioms of Separation, Replacement,
and Choice; see the Appendix to AUN for these). By Closure, we can assume
that ψ is observable. Then y = ψ(a) is a-accessible, and P(ψ(a), a, ϕ(a)) is true.
�

It is easy to modify the statement and proof of the a-closure principle to
allow a finite list b1, . . . , b` of parameters in place of the single parameter b.

We next show that numbers a-ultrasmall relative to f can replace numbers
ultrasmall relative to f and a in the definition of limx→a f(x) (and hence also
in the definition of continuity of f at a and derivative of f at a).

Theorem 4
The following statements are equivalent:

(1) lim
x→a

f(x) = L

(2) Relative to a context where f is observable: L is a-accessible and
f(a+ h)− L is a-ultrasmall (or 0), for all a-ultrasmall h.
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Proof: We work in a context where f is observable.
(1) implies (2): The limit L is observable, hence a-accessible. Let ε > 0 be

a-accessible. By the epsilon-delta definition of limit, there exists δ > 0 such
that

0 < |x− a| < δ implies |f(x)− L| < ε.

Using the a-Closure Principle, we can take δ to be a-accessible. If now h is a-
ultrasmall, we set x = a+h and have |x−a| = |h| < δ, hence |f(a+h)−L| < ε.
As ε is an arbitrary positive a-accessible number, f(a+ h)− L is a-ultrasmall.

(2) implies (1): We assume (1) is false and prove that (2) is false. So let
limx→a f(x) 6= L, i.e., there exists ε > 0 such that

(∗) for every δ > 0 there exists x such that 0 < |x− a| < δ and |f(x)− L| ≥ ε.

By a-Closure Principle we can assume that ε is a-accessible. Let {ϕ1, . . . , ϕk}
be an observable finite set of positive functions; we define ϕ by

ϕ : x 7→ min{ϕ1(x), . . . , ϕk(x)}.

Notice that ϕ is observable. Let δ = ϕ(a) in (*). We get that there exists x such
that 0 < |x − a| < ϕi(a) and |f(x) − L| ≥ ε is true for i = 1, . . . , k. Applying
Idealization, we obtain x such that

0 < |x− a| < ϕ(a) and |f(x)− L| ≥ ε

is true for all observable positive ϕ. Then h = x−a is a-ultrasmall and we have
|f(a+ h)− L| ≥ ε, so f(a+ h)− L is not a-ultrasmall. Hence (2) fails. �

We immediately deduce the following a-version of the Increment Equation.

Theorem 5
Relative a context where f is observable: Suppose that f is differentiable at a.
Let dx be a-ultrasmall. Then there is ε which is a-ultrasmall or 0, such that

f(a+ dx) = f(a) + f ′(a) · dx+ ε · dx.

We leave the corresponding straddle version of the a-Increment Equation as
an exercise.

Exercise 2 (Straddle version) (Answer page 33)
Relative a context where f is observable: Suppose that f is differentiable at a.
Let x1 ≤ a ≤ x2 be such that a− x1 and x2 − a are a-ultrasmall or 0. Show that
there is ε which is a-ultrasmall or 0, such that

f(x2)− f(x1) = f ′(a)(x2 − x1) + ε · (x2 − x1).

Definition 2
A tagged partition (P, T ) is superfine if each dxi is ti-ultrasmall.

Existence of superfine partitions follows from a classical lemma.
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Definition 3
Let ϕ be a positive function defined on [a, b]. We say that a tagged partition
(P, T ) of [a, b] is subordinate to ϕ if dxi < ϕ(ti), for all i = 0, . . . , n− 1.

Theorem 6 (Cousin’s Lemma)
If ϕ is a positive function defined on [a, b], then there is a tagged partition (P, T )
of [a, b] subordinate to ϕ.

Proof: We proceed by contradiction and assume that there is no tagged par-
tition of I0 = [a, b] subordinate to ϕ. Let c = (a + b)/2 be the midpoint of
the interval I0. Either the interval [a, c] or the interval [c, b] has no partition
subordinate to ϕ; otherwise, we could combine them and obtain a partition of I0
subordinate to ϕ. In the first case we let I1 = [a, c]; otherwise, I1 = [c, b]; I1 has
no partition subordinate to ϕ and the length of I1 is (b − a)/2. Continuing in
this manner, we construct a nested sequence of closed intervals I0, I1, . . . .In, . . .,
none of which has a partition subordinate to ϕ, and such that the length of In
is (b − a)/2n; in particular, the length of In converges to 0. By the nested
interval theorem, there is a number c that belongs to every In. Let n be such
that (b − a)/2n < ϕ(c). Then the trivial partition of In (that is, x0 is the left
endpoint of In, x1 is the right endpoint of In), tagged by t0 = c, is subordinate
to ϕ, a contradiction.

�

Theorem 7
For every a < b there exists a superfine partition of [a, b].

Proof: We again use Idealization. Let {ϕ1, . . . , ϕk} be a set of positive func-
tions defined on [a, b] and observable relative to a and b; then

ϕ(x) = min(ϕ1(x), . . . , ϕk(x))

is a positive function, and ϕ ≤ ϕi for all i = 1, . . . , k. Applying Idealization, we
obtain a positive function ϕ such that ϕ ≤ ϕ for all observable positive ϕ. By
Cousin’s Lemma, there exists a tagged partition of [a, b] subordinate to ϕ. It is
clear that this partition is superfine. �

We conclude with two technical results about superfine partitions.
Let x0 < x1 < · · · < xn be a fine partition of [a, b]; then for each i there is at

most one element in [xi, xi+1] which is observable relative to a and b. We now
show that for superfine partitions we necessarily take that element as a tag.

Theorem 8
Let (P, T ) be a superfine partition of [a, b]. Every observable real number
c ∈ [a, b] belongs to T .

Proof: The context is specified by a, b. Let c ∈ [a, b] be observable. Let ϕ be
the function defined by

ϕ(x) =

{
|x− c| if x 6= c;

1 if x = c.
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Then ϕ is positive and observable. Let i be such that c ∈ [xi, xi+1]. We show
that ti = c. If not, then since dxi is ti-ultrasmall, we must have dxi < ϕ(ti) =
|ti − c|, i.e., |xi+1 − xi| < |ti − c|, so c /∈ [xi, xi+1], a contradiction. This shows
that c ∈ T . �

Let (P, T ) be a tagged partition. We define a new tagged partition (P∗, T ∗)
as follows: whenever xi < ti < xi+1, we split the interval [xi, xi+1] into [xi, ti]
and [ti, xi+1], and let ti be the tag for both. We note that f(ti)(xi+1 − xi) =
f(ti)(xi+1 − ti) + f(ti)(ti − xi), so

∑
(f ;P, T ) =

∑
(f ;P∗, T ∗). The partition

(P∗, T ∗) has the property that the tag for each subinterval is either the left or
the right endpoint. If (P, T ) is superfine, then (P∗, T ∗) is superfine and, by the
previous proposition, every c ∈ [a, b] from the context is specified by one of the
points x0, . . . , xn of the partition P∗.

Theorem 9
Let a, b ∈ R and a system of open intervals {Ik}∞k=1 appear at the observation
level. If (P, T ) is a superfine partition of [a, b], then for each ti ∈

⋃∞
k=1 Ik there

is some k such that [xi, xi+1] ⊆ Ik.

Proof: Let us write Ik = (ak, bk), for some ak < bk. We define ϕ : [a, b] → R
by

ϕ(x) =

{
min(x− ak, bk − x) where k is least such that ti ∈ (ak, bk);

1 if no such k exists.

Notice that ϕ is well-defined. It is a positive function at the observation level.
Let ti ∈

⋃∞
k=1(ak, bk) and let k be the least index such that ti ∈ (ak, bk).

The partition is superfine, so using the definition of ϕ we have

xi+1 − xi = dxi < ϕ(ti) ≤ min(ti − ak, bk − ti).

It follows that xi, xi+1 ∈ (ak, bk), i.e., [xi, xi+1] ⊆ Ik. �

2 The generalized Riemann integral

The generalization of Riemann integral that we present here was developed
independently by Ralph Henstock and Jaroslav Kurzweil; it is sometimes called
Henstock-Kurzweil integral.

Definition 4
A function f defined on [a, b] is generalized Riemann integrable on [a, b]
(or simply integrable on [a, b]) if there is an observable number R such that∑

(f ;P, T ) ' R,

for all superfine tagged partitions (P, T ) of [a, b].
In this is the case, we write ∫ b

a

f(x) · dx = R.
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Superfine partitions are fine, so it follows immediately that all Riemann in-
tegrable functions are integrable in the new, generalized sense. In particular, all
continuous functions and all monotone functions defined on [a, b] are integrable.

The first two theorems are analogs of AUN Theorems 132 and 133 for the Rie-
mann integral. They are proved by replacing the word “fine” with “superfine”
in the proofs from AUN, Chapter 9.

Theorem 10 (Linearity)
Let f and g be integrable on [a, b] and let λ, µ be real numbers. Then λ ·f+µ ·g
is integrable on [a, b] and∫ b

a

(λ · f + µ · g)(x) · dx = λ

∫ b

a

f(x) · dx+ µ

∫ b

a

g(x) · dx.

Theorem 11 (Monotonicity)
Let f and g be integrable on [a, b]. Assume that f(x) ≤ g(x), for all a ≤ x ≤ b.
Then ∫ b

a

f(x) · dx ≤
∫ b

a

g(x) · dx.

Theorem 12 (Cauchy Test)
Let f be defined on [a, b]. Then f is integrable on [a, b] if and only if∑

(f ;P, T ) '
∑

(f ;P ′, T ′),

for all superfine tagged partitions (P, T ), (P ′, T ′) of [a, b].

Proof: If f is integrable, then
∑

(f ;P, T ) '
∫ b
a
f(x) · dx '

∑
(f ;P ′, T ′), so f

has the Cauchy property.
For the converse, assume that f has the Cauchy property. The context is

specified by f , a and b. It suffices to show that the numbers
∑

(f ;P, T ) are not
ultralarge; we can then let R be the observable neighbor of

∑
(f ;P, T ), and the

Cauchy property implies that f is integrable and
∫ b
a
f(x) · dx = R.

We fix one superfine partition (P0, T0) and let

m̃ =
∑

(f ;P0, T0)− 1 and M̃ =
∑

(f ;P0, T0) + 1.

For every superfine partition (P, T ) we have∑
(f ;P, T ) '

∑
(f ;P0, T0)

and hence m̃ <
∑

(f ;P, T ) < M̃ . The following statement is therefore true:

“There exist m,M such that m <
∑

(f ;P, T ) < M , for all superfine
partitions.”

The statement is internal and its parameters are f, a, b; therefore, by Closure,

“There exist observable m,M such that m <
∑

(f ;P, T ) < M , for all
superfine partitions.”
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This is precisely the assertion that no
∑

(f ;P, T ) is ultralarge. �

Theorem 13 (Additivity)
Let a < c < b; then f is integrable on [a, b] if and only if f is integrable on [a, c]
and on [c, b]. If this is the case, then∫ b

a

f(x) · dx =

∫ c

a

f(x) · dx+

∫ b

c

f(x) · dx.

Proof: Assume that f is integrable on [a, b]. Let (P1, T1) and (P2, T2) be two
superfine partitions of [a, c]. We extend them to superfine partitions (P ′1, T ′1 )
and (P ′2, T ′2 ) of [a, b] in such a way that they coincide on [c, b]. We then have∑

(f ;P1, T1)−
∑

(f ;P2, T2) =
∑

(f ;P ′1, T ′1 )−
∑

(f ;P ′2, T ′2 ) ' 0,

because f is integrable on [a, b]. Hence f has the Cauchy property on [a, c] and
is integrable on [a, c].

Assume that f is integrable on [a, c] and [c, b]. Let (P, T ) be a superfine
partition of [a, b]; by the comment following Theorem 8 we can assume without
loss of generality that c is a partition point of P. Let (P1, T1) and (P2, T2) be
the restrictions of (P, T ) to [a, c] and [c, b], respectively. Then∑

(f ;P, T ) =
∑

(f ;P1, T1) +
∑

(f ;P2, T2) '
∫ c

a

f(x) · dx+

∫ b

c

f(x) · dx,

so f is integrable on [a, b] and∫ b

a

f(x) · dx =

∫ c

a

f(x) · dx+

∫ b

c

f(x) · dx.

�

Theorem 14 (Fundamental Theorem of Calculus)
If f is differentiable on [a, b], then f ′ is integrable on [a, b] and∫ b

a

f ′(x) · dx = f(b)− f(a).

Proof: Let (P, T ) be a superfine partition of [a, b]. By the straddle version of
the a-Increment Equation (Exercise 2), f(xi+1) − f(xi) = f ′(ti) · dxi + εi · dxi
with εi which is ti-ultrasmall or 0. Hence

n−1∑
i=0

f ′(ti) · dxi =

n−1∑
i=0

(f(xi+1)− f(xi))−
n−1∑
i=0

εi · dxi.

But
∑n−1
i=0 (f(xi+1) − f(xi)) = f(xn) − f(x0) = f(b) − f(a). Moreover, all

εi are ultrasmall (or 0) and dxi are ultrasmall with
∑n−1
i=0 dxi = b − a, so∑n−1

i=0 εi · dxi ' 0, as usual. This shows that f ′ is integrable and∫ b

a

f ′(x) · dx = f(b)− f(a).
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Theorem 14 fulfills our goal of solving the fundamental problem of calculus
for all differentiable functions. The reader will notice that, up to this point, the
proofs in this section closely resemble those of the analogous results in AUN,
Chapter 9. However, there are powerful theorems about the generalized Rie-
mann integral that go far beyond Chapter 9. Their proofs tend to be more subtle
and, in some cases, involve a combination of “epsilon–delta” and “ultrasmall”
arguments. We derive several such results in the rest of this section.

Theorem 15
Let f be a function and R a real number. The following statements are equiv-
alent:

(1) f is integrable on [a, b] and
∫ b
a
f(x) · dx = R.

(2) For every ε > 0 there is a positive function δ such that

|
∑

(f ;P, T )−R| < ε,

for all tagged partitions (P, T ) subordinate to δ.

Proof: The context is specified by f , a and b.

(1) implies (2): Let ε > 0 be observable. In the proof of Theorem 7 we showed
that there is a positive function ϕ with the property that every partition
(P, T ) subordinate to ϕ is superfine, and hence |

∑
(f ;P, T ) − R| < ε.

Letting δ = ϕ proves (2) for observable ε > 0. By Closure, (2) is true for
all ε > 0.

(2) implies (1): Let (P, T ) be superfine, and let ε > 0 be observable. By
Closure there is an observable positive function δ with the property in
(2). As (P, T ) is subordinate to δ, we have |

∑
(f ;P, T )−R| < ε. This is

true for all observable ε > 0, so
∑

(f ;P, T ) ' R.

�

Definition 5
A partially tagged partition of [a, b] is a partition P = {x0, x1, . . . , xn} and a
partial tagging T = {tj : j ∈ J}, where J ⊆ {0, 1, . . . , n− 1} and tj ∈ [xj , xj+1]
for all j ∈ J .

As for tagged partitions, we use the notation
∑

(f ;P, T ) for
∑
j∈J f(tj)·dxj .

Definition 6
We say that a partially tagged partition is subordinate to ϕ if

dxj < ϕ(tj), for all j ∈ J .

We call it superfine if

dxj is tj-ultrasmall, for all j ∈ J.
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The next key lemma shows that, for integrable functions, the Riemann sums
give a good approximation of the integral not only over the whole interval [a, b],
but over any collection of subintervals from the partition as well.

Theorem 16 (Saks-Henstock Lemma)
Let f be integrable on [a, b] and let ε > 0. There exists a positive function δ
such that ∣∣∣∑

j∈J
f(tj) · dxj −

∑
j∈J

∫ xj+1

xj

f(x) · dx
∣∣∣ < ε,

for every partially tagged partition (P, T ) subordinate to δ. In fact, for any
such partially tagged partition we also have∑

j∈J

∣∣∣f(tj) · dxj −
∫ xj+1

xj

f(x) · dx
∣∣∣ < 2ε,

and even ∣∣∣∑
j∈J
|f(tj) · dxj | −

∑
j∈J
|
∫ xj+1

xj

f(x) · dx|
∣∣∣ < 2ε.

Proof: Since f is integrable, we can find a positive function δ in V(f, a, b, ε)
such that ∣∣∣∑(f ;P, T )−

∫ b

a

f(x) · dx
∣∣∣ < ε,

for every tagged partition (P, T ) subordinate to δ.
Consider now a partially tagged partition (P, T ) subordinate to δ. The con-

text contains f, a, b, ε, and this partially tagged partition (P, T ). In particular,
J is observable. Let i 6∈ J . Since f is integrable over [xi, xi+1], we have∫ xi+1

xi

f(x) · dx '
∑

(f ;Pi, Ti)

for any superfine partition (Pi, Ti) of [xi, xi+1] (relative to the context aug-
mented by xi, xi+1). Select one such partition for each i /∈ J (this is justified
by the Principle of Finite Choice, see the Appendix in AUN.) The union of the
partitions (Pi, Ti) together with (P, T ) is a partition of [a, b] subordinate to δ.
Therefore, ∣∣∣ ∫ b

a

f(x) · dx−
∑
j∈J

f(tj) · dxj −
∑
i/∈J

∑
(f ;Pi, Ti)

∣∣∣ < ε.

On the other hand, by the additivity property of the integral we have∫ b

a

f(x) · dx =
∑
j∈J

∫ xj+1

xj

f(x) · dx+
∑
i/∈J

∫ xi+1

xi

f(x) · dx.

Substituting this into the previous inequality, we get

∣∣∣∑
j∈J

∫ xj+1

xj

f(x) ·dx−
∑
j∈J

f(tj) ·dxj+
∑
i/∈J

[ ∫ xi+1

xi

f(x) ·dx−
∑

(f ;Pi, Ti)
]∣∣∣ < ε.
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As {i : i /∈ J} is finite and observable, and for each i we have
∫ xi+1

xi
f(x)·dx '∑

(f ;Pi, Ti), the quantity between the square brackets is ultraclose to 0. It
follows that ∣∣∣∑

j∈J

∫ xj+1

xj

f(x) · dx−
∑
j∈J

f(tj) · dxj
∣∣∣ < ε.

For the second claim, we consider the two partially tagged partitions deter-
mined by

J+ = {j ∈ J : f(tj) · dxj ≥
∫ xj+1

xj

f(x) · dx}

and
J− = {j ∈ J : j /∈ J+}.

Applying the first result separately to J+ and J−, we get∑
j∈J+

∣∣∣f(tj) · dxj −
∫ xj+1

xj

f(x) · dx
∣∣∣ =

∑
j∈J+

(
f(tj) · dxj −

∫ xj+1

xj

f(x) · dx
)
< ε

and∑
j∈J−

∣∣∣f(tj) · dxj −
∫ xj+1

xj

f(x) · dx
∣∣∣ =

∑
j∈J−

(∫ xj+1

xj

f(x) · dx− f(tj) · dxj
)
< ε.

The second claim follows by adding the two lines.
For the final claim, we use the triangle inequality

|f(tj) · dxj | ≤
∣∣∣f(tj) · dxj −

∫ xj+1

xj

f(x) · dx
∣∣∣+
∣∣∣ ∫ xj+1

xj

f(x) · dx
∣∣∣,

so∑
j∈J
|f(tj) · dxj | ≤

∑
j∈J

∣∣∣f(tj) · dxj −
∫ xj+1

xj

f(x) · dx
∣∣∣+
∑
j∈J

∣∣∣ ∫ xj+1

xj

f(x) · dx
∣∣∣

<
∑
j∈J

∣∣∣ ∫ xj+1

xj

f(x) · dx
∣∣∣+ 2ε,

and similarly, from∣∣∣ ∫ xj+1

xj

f(x) · dx
∣∣∣ ≤ ∣∣∣f(tj) · dxj

∣∣∣+
∣∣∣ ∫ xj+1

xj

f(x) · dx− f(tj) · dxj
∣∣∣

one deduces that∑
j∈J

∣∣∣ ∫ xj+1

xj

f(x) · dx
∣∣∣ <∑

j∈J
|f(tj) · dxj |+ 2ε.

�
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Exercise 3 (Answer page 33)
Show that if f is integrable on [a, b] and (P, T ) is a superfine partially tagged
partition of [a, b], then∑

j∈J
f(tj) · dxj '

∑
j∈J

∫ xj+1

xj

f(x) · dx.

Moreover ∑
j∈J
|f(tj) · dxj | '

∑
j∈J

∣∣∣ ∫ xj+1

xj

f(x) · dx
∣∣∣.

We are ready to prove the central result in the theory of generalized Riemann
integral.

Theorem 17 (Monotone Convergence Theorem)
Let (fn)∞n=1 be a monotone sequence of integrable functions on [a, b] such that

f(x) = lim
n→∞

fn(x) exists for each x ∈ [a, b].

If the sequence (
∫ b
a
fn(x) · dx)∞n=1 is bounded, then f is integrable on [a, b] and∫ b

a

f(x) · dx = lim
n→∞

∫ b

a

fn(x) · dx.

Proof: We give a proof for the case when (fn)∞n=1 is increasing.
The context is specified by the sequence (fn)∞n=1, a, and b. Hence the func-

tion f is observable.
Let k ∈ N. Since fk is integrable, there is a positive function δk such that∑

i∈J

∣∣∣fk(ti) · dxi −
∫ xi+1

xi

fk(x) · dx
∣∣∣ ≤ 1

2k
, (†)

for every partially tagged partition subordinate to δk. Since this is a traditional
mathematical statement, we can choose one such δk for each k, and by Closure,
we may assume that the sequence (δk)∞k=1 is observable.

By the monotonicity property of the integral, the sequence (
∫ b
a
fn(x) ·dx)∞n=1

is increasing. By assumption, it is bounded, so by the Monotone Convergence
Theorem for sequences, this sequence converges. Let an observable R be such
that

R = lim
n→∞

∫ b

a

fn(x) · dx.

Let (P, T ) be a superfine partition. By the Local Stability Principle (see
the Appendix to these notes), there is an ultralarge N such that (P, T ) remains
superfine relative to the context augmented by N .

Since N is ultralarge, we have

R '
∫ b

a

fN (x) · dx.

13



For each x ∈ [a, b], let k(x) ≥ N be the least such that

|fk(x)(x)− f(x)| ≤ 1

N
.

In particular, fk(ti)(ti) ' f(ti), for i = 0, . . . , n. Notice that the function
x 7→ k(x) is observable relative to the context augmented by N .

We define
δ(x) = δk(x)(x),

so δ is a positive function observable relative to the context augmented by N .
Since (P, T ) is superfine relative to the context augmented by N , it is sub-

ordinate to δ.
We need to show that

n−1∑
i=0

f(ti) · dxi ' R.

First, notice that

n−1∑
i=0

f(ti) · dxi '
n−1∑
i=0

fk(ti)(ti) · dxi, (*)

since f(ti) = fk(ti)(ti) + εi, with εi ' 0, and
∑n−1
i=0 εi · dxi ' 0.

Second, using the Saks-Henstock lemma, we must have

n−1∑
i=0

fk(ti)(ti) · dxi '
n−1∑
i=0

∫ xi+1

xi

fk(ti)(x) · dx. (**)

To see this, define

Jp = {i : k(ti) = p}, for each p ∈ N.

(Of course, Jp = ∅ for all but finitely many values of p.) We consider the
partially tagged partition (P, Tp) obtained from (P, T ) by restricting T to Jp.
Now since (P, T ) is subordinate to δ, if i ∈ Jp we have

dxi < δ(ti) = δki(t)(ti) = δp(ti),

by definition of δ. This shows that (P, Tp) is subordinate to δp. By (†) we
deduce that∑

i∈Jp

∣∣∣fk(ti)(ti) · dxi − ∫ xi+1

xi

fk(ti)(x) · dx
∣∣∣ ≤ 2

2p
=

1

2p−1
.

As each k(ti) is equal to some p ≥ N , adding these inequalities gives
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∣∣∣ n−1∑
i=0

fk(ti)(ti) · dxi −
n−1∑
i=0

∫ xi+1

xi

fk(ti)(x) · dx
∣∣∣

≤
n−1∑
i=0

∣∣∣fk(ti)(ti) · dxi − ∫ xi+1

xi

fk(ti)(x) · dx
∣∣∣

=
∑
p≥N

∑
i∈Jp

∣∣∣fk(ti)(ti) · dxi − ∫ xi+1

xi

fk(ti)(x) · dx
∣∣∣

≤
∑
p≥N

1

2p−1
' 0,

since N is ultralarge.
Finally, we show that

n−1∑
i=0

∫ xi+1

xi

fk(ti)(x) · dx ' R. (***)

Let K = max{k(ti) : 0 ≤ i < n}. Then K ≥ N and

fN (x) ≤ fk(ti)(x) ≤ fK(x), for all x ∈ [a, b].

Hence ∫ xi+1

xi

fN (x) · dx ≤
∫ xi+1

xi

fk(ti)(x) · dx ≤
∫ xi+1

xi

fK(x) · dx,

and

R '
∫ b

a

fN (x) · dx ≤
n−1∑
i=0

∫ xi+1

xi

fk(ti)(x) · dx ≤
∫ b

a

fK(x) · dx ' R.

(The last step holds because K is ultralarge.) This establishes (***).
Now putting together (*), (**), and (***) yields the conclusion.

�

We derive a few consequences of Monotone Convergence Theorem here, and
several more in the next section. Given an interval I = (a, b), we denote by `(I)
the length of I; i.e., `(I) = b− a.
Definition 7
Let A ⊆ R. We say that A is a null set if there are open intervals In such that

A ⊆
∞⋃
n=1

In and

∞∑
n=1

`(In) ' 0.

Example
Let C = {cn}∞n=1 be a countable set. Fix ε ' 0 and, for each n, let

In =
(
cn −

ε

2n
, cn +

ε

2n

)
.
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Then `(In) = 2 · ε2n and
∑∞
n=1 `(In) = 2 · ε ' 0. Thus, all countable sets are null

sets.
The Cantor set is an example of an uncountable null set.

We say that a statement about real numbers is true almost everywhere if
the set of those x for which the statement is false is a null set.

Theorem 18
If f is integrable on [a, b] and f(x) = g(x) almost everywhere, then g is integrable
on [a, b] and ∫ b

a

g(x) · dx =

∫ b

a

f(x) · dx.

Proof: Let h(x) = g(x)− f(x). Then there is a null set E such that h(x) = 0
for all x /∈ E. It suffices to prove that h is integrable and∫ b

a

h(x) · dx = 0.

The context contains h, a, b, and E. By Closure, we can find an observable
{Ik}∞k=1 such that E ⊆

⋃
k Ik and

∑
`(Ik) ' 0.

We first show the result in the case when h is bounded. By Closure, there
is then an observable M such that |h(x)| ≤ M , for all x ∈ [a, b]. If (P, T ) is
superfine relative to this level, then by Theorem 9, for every ti ∈ E, we have
[xi, xi+1] ⊆ Iki for some ki. If ti /∈ E, then h(ti) = 0. These observations give

|
∑

(h;P, T )| = |
∑
ti∈E

h(ti) · dxi +
∑
ti /∈E

h(ti) · dxi|

≤
∑
ti∈E

M · dxi

≤M ·
∞∑
k=1

`(Ik) ' 0.

(In the last step we used the fact that the intervals [xi, xi+1] are non-overlapping,

so
∑
ki=k

dxi ≤ `(Ik).) Hence h is integrable and
∫ b
a
h(x) · dx = 0.

Now assume that h ≥ 0, but possibly unbounded. For each n ∈ N we define

hn(x) = min(h(x), n), for x ∈ [a, b].

Clearly hn(x) = 0 for all x /∈ E and hn is bounded. By the first paragraph, hn is

integrable and
∫ b
a
hn(x) ·dx = 0. As {hn}∞n=1 is increasing and limn→∞ hn(x) =

h(x), the Monotone Convergence Theorem shows that h is integrable and∫ b

a

h(x) · dx = lim
n→∞

∫ b

a

hn(x) · dx = 0.

Now let h be arbitrary. Write h = h+ − h−; clearly h+(x), h−(x) equal 0
except for x ∈ E, and h+ ≥ 0, h− ≥ 0. Thus both h+ and h− are integrable
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and
∫ b
a
h+(x) ·dx =

∫ b
a
h−(x) ·dx = 0 by the previous two paragraphs. It follows

by additivity that h is integrable and∫ b

a

h(x) · dx =

∫ b

a

h+(x) · dx−
∫ b

a

h−(x) · dx = 0.

�

Example
The Dirichlet function f : [0, 1]→ R is defined by

f(x) =

{
1 if x ∈ Q;

0 otherwise.

As all countable sets are null sets, it follows that the Dirichlet function is gener-
alized Riemann integrable and

∫
f(x) · dx = 0. We saw in AUN, Chapter 9 that

the Dirichlet function is not Riemann integrable. We now give a classical exam-
ple showing that the monotone convergence theorem fails for Riemann integrable
functions. Fix an enumeration of Q = {qn : n ∈ N}. Define fn : [0, 1]→ Q by

fn(x) =

{
1 if x = qk, for some k ≤ n;

0 otherwise.

Then the sequence (fn) is increasing and its limit is the Dirichlet functionf . More-
over, fn is continuous everywhere except on a finite set, so fn is Riemann inte-

grable and
∫ b
a
fn(x) · dx = 0. Thus, limn→∞

∫ b
a
fn(x) · dx = 0, but the limit

function f is not Riemann integrable.

The final result of this section is a substantially strengthened version of the
Fundamental Theorem of Calculus, which allowed us to recover the function
from its derivative. It states essentially that if a continuous function is differ-
entiable everywhere except on a countable set, then one can still recover the
function from its derivative. (Recall that if a function is differentiable every-
where on [a, b], then it is continuous.)

Theorem 19 (Fundamental Theorem of Calculus, Strong Version)
Let f be continuous on [a, b]. Let C ⊆ [a, b] be a countable set. Let g be
a function defined on [a, b] such that g(x) = f ′(x) for all x 6∈ C. Then g is
integrable and ∫ b

a

g(x) · dx = f(b)− f(a).

Proof: The context is specified by f, g, a, b and an enumeration {ck}∞k=1 of C.
The set C is a null set, and hence, by Theorem 18, we may assume without loss
of generality that g(x) = 0 for all x ∈ C. Let (P, T ) be a superfine partition
of [a, b]. If ti /∈ C, then g(ti) · dxi = f ′(ti) · dxi = f(xi+1) − f(xi) − εi · dxi
where εi ' 0, by the straddle version of the Increment Equation. If ti ∈ C, then
g(ti) · dxi = 0. Hence

n−1∑
i=0

g(ti) · dxi =
∑
ti /∈C

(f(xi+1)− f(xi)− εi · dxi) '
∑
ti /∈C

(f(xi+1)− f(xi)).
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It remains to prove that
∑
ti∈C(f(xi+1)− f(xi)) ' 0.

Let ε > 0 be observable. From the assumption that f is continuous at ck it
follows that there is a δk > 0 such that

|x− ck| < δk implies |f(x)− f(ck)| < ε

2k
.

We define the function ϕ as follows

ϕ(x) =

{
δk if x = ck;

1 otherwise.

Then ϕ is an observable positive function. Suppose that ti = ck. Then, since
the partition is superfine we have

dxi < ϕ(ck) = δk.

Hence

|f(xi+1)− f(xi)| ≤ |f(xi+1)− f(ck)|+ |f(ck)− f(xi)| ≤
ε

2k
+

ε

2k
=

ε

2k−1
.

Each ck can be equal to at most two tags (ti and ti+1, if it so happens that
ti = ck = ti+1), so we have∑

ti∈C
|f(xi+1)− f(xi)| ≤

∞∑
k=1

2 · ε

2k−1
= 4ε.

As ε was an arbitrary observable positive number, we have∑
ti∈C
|f(xi+1)− f(xi)| ' 0.

�

3 The Lebesgue integral

The most popular advanced theory of integration is due to Henri Lebesgue. We
show that the main theorems about Lebesgue integral follow from the results of
the preceding section.

Definition 8
A function f : [a, b]→ R is Lebesgue integrable on [a, b] if both f and |f | are
generalized Riemann integrable on [a, b].

Exercise 4 (Answer page 33)
Show that Lebesgue integrability is equivalent to the generalized Riemann inte-
grability of f+ and f−.

We will show later in this section that the function f defined by

f(x) =

{
1
x sin( 1

x ) if x 6= 0;

0 if x = 0.
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is integrable on [0, 1], but not Lebesgue integrable on [0, 1].

Theorem 20 (Comparison Test)
Let f and g be integrable on [a, b]. If |f | ≤ g, then f is Lebesgue integrable on
[a, b].

Proof: The context is specified by f , g, a, and b. Let (P, T ) be a superfine
partition of [a, b]. From −g ≤ f ≤ g we derive that

−
∫ xi+1

xi

g(x) · dx ≤
∫ xi+1

xi

f(x) · dx ≤
∫ xi+1

xi

g(x) · dx,

i.e., ∣∣∣ ∫ xi+1

xi

f(x) · dx
∣∣∣ ≤ ∫ xi+1

xi

g(x) · dx.

Hence,
∑n−1
i=0 |

∫ xi+1

xi
f(x) · dx| ≤

∫ b
a
g(x) · dx is not ultralarge. Let R be the

observable neighbor of
n−1∑
i=0

∣∣∣ ∫ xi+1

xi

f(x) · dx
∣∣∣.

Now

|
∑

(|f |;P, T )−R| ≤
∣∣∣ n−1∑
i=0

|f(ti)| · dxi −
n−1∑
i=0

|
∫ xi+1

xi

f(x) · dx|
∣∣∣

+
∣∣∣ n−1∑
i=0

|
∫ xi+1

xi

f(x) · dx| −R
∣∣∣.

The first term is ultraclose to 0 by the Saks-Henstock lemma and the second
also, by definition of R. We conclude that |f | is integrable. �

Theorem 21 (Linearity)
Let f and g be Lebesgue integrable on [a, b] and let λ, µ be real numbers. Then
λ · f + µ · g is Lebesgue integrable on [a, b].

Proof: The function λ · f + µ · g is integrable by Theorem 10. Furthermore,
|λ · f(x) + µ · g(x)| ≤ |λ| · |f(x)| + |µ| · |g(x)| and the function on the right is
integrable. The Comparison Test implies that |λ · f(x) + µ · g(x)| is integrable.
�

Exercise 5 (Additivity) (Answer page 33)
Let a < c < b; show that f is Lebesgue integrable on [a, b] if and only if f is
Lebesgue integrable on [a, c] and on [c, b].

Theorem 22
Let f, g be integrable and f ≤ g. Then f is Lebesgue integrable if and only if g
is Lebesgue integrable.
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Proof: Suppose f and g are integrable and f is Lebesgue integrable. Then
g = (g− f) + f where g− f is integrable and nonnegative; so g− f is Lebesgue
integrable. Hence g is Lebesgue integrable by Theorem 21. The proof when g
is supposed to be Lebesgue integrable is similar. �

Exercise 6 (Answer page 33)
In the Monotone Convergence Theorem, show that if one of the functions fn is
Lebesgue integrable, then f = lim fn is Lebesgue integrable.

Exercise 7 (Answer page 34)
Show that if f is Lebesgue integrable and f(x) = g(x) almost everywhere, then g
is Lebesgue integrable.

Theorem 23
If f, g, h are integrable and h ≤ f , h ≤ g, then the functions min{f(x), g(x)}
and max{f(x), g(x)} are integrable.

Proof: We first observe that

min{f(x), g(x)} =
1

2
(f(x) + g(x)− |f(x)− g(x)|)

and

max{f(x), g(x)} =
1

2
(f(x) + g(x) + |f(x)− g(x)|)

(check separately the cases f(x) ≥ g(x) and f(x) ≤ g(x)). Next, from the first
equation, |f(x)−g(x)| = f(x)+g(x)−2 ·min(f(x), g(x)) ≤ f+g−2h, so |f(x)−
g(x)| is integrable by the Comparison Test. It follows that min{f(x), g(x)} and
max{f(x), g(x)} are integrable. �

The next theorem is a cornerstone of Lebesgue integration. Suppose that
(fk) is a sequence of functions bounded below, i.e., there is a function h such
that fk ≥ h for all k. Then hk(x) = inf`≥k f`(x) exists, and the sequence (hk(x))
is increasing, for all x ∈ [a, b]. We define the function lim inf fk by

(lim inf fk)(x) = lim inf fk(x) = lim
k→∞

hk(x),

for each x where the limit exists (i.e., where the sequence (hk(x)) is bounded).

Theorem 24 (Fatou’s Lemma)
Let fk be integrable functions, for k = 1, 2, . . .. Let h be integrable and such
that h ≤ fk, for all k. Suppose that lim inf fk is defined for all x ∈ [a, b]. If

lim inf
∫ b
a
fk(x)dx <∞, then lim inf fk is integrable and∫ b

a

lim inf fk(x) · dx ≤ lim inf

∫ b

a

fk(x) · dx.

If h is Lebesgue integrable, then lim inf fk is Lebesgue integrable.
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Proof: For fixed k and n ≥ k, let

gkn = min(fk, . . . , fn).

Then gkn ≥ h. An easy induction using the previous theorem shows that gkn is
integrable. Moreover, gkn ≥ gkn+1, so the sequence (gkn)n≥1 is decreasing. But∫ b

a

h(x) · dx ≤
∫ b

a

gkn(x) · dx ≤
∫ b

a

gkk(x) · dx,

so (
∫ b
a
gkn(x) · dx)n≥k is bounded. By the Monotone Convergence Theorem, we

have that
hk = inf

`≥k
f` = lim

n→∞
gkn is integrable.

The sequence (hk)k≥1 is increasing and h ≤ hk ≤ fk, so∫ b

a

h(x) · dx ≤
∫ b

a

hk(x) · dx ≤
∫ b

a

fk(x) · dx, for each k.

Hence
∫ b
a
h(x) · dx ≤ lim inf

∫ b
a
hk(x) · dx ≤ lim inf

∫ b
a
fk(x) · dx < ∞. But the

sequence (
∫ b
a
hk(x) · dx)k≥1 is increasing, so

lim inf

∫ b

a

hk(x) · dx = lim
k→∞

∫ b

a

hk(x) · dx <∞

and (
∫ b
a
hk(x) · dx)k≥1 is bounded. Applying the Monotone Convergence Theo-

rem once again, we deduce∫ b

a

lim inf fk(x) · dx =

∫ b

a

lim
k→∞

hk(x) · dx = lim
k→∞

∫ b

a

hk(x) · dx

≤ lim inf

∫ b

a

fk(x) · dx.

The last claim follows from Exercise 6. �

Theorem 25 (Dominated Convergence Theorem)
Let fn be integrable functions for n = 1, 2, . . . and let f(x) = limn→∞ fn(x)
exist for all x ∈ [a, b]. Suppose that there are integrable functions h1, h2 such
that

h1(x) ≤ fn(x) ≤ h2(x), for all x ∈ [a, b].

Then the function f is integrable and∫ b

a

f(x) · dx = lim
n→∞

∫ b

a

fn(x) · dx.

If at least one of h1, h2 is Lebesgue integrable, then f is Lebesgue integrable.

Proof: The assumptions of Fatou’s lemma are satisfied, so we deduce that f is
integrable and ∫ b

a

lim fn(x) · dx ≤ lim inf

∫ b

a

fn(x) · dx.
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Similarly,

−
∫ b

a

lim fn(x) · dx =

∫ b

a

lim(−fn(x)) · dx

≤ lim inf

∫ b

a

(−fn(x)) · dx = − lim sup

∫ b

a

fn(x) · dx,

i.e.,

lim sup

∫ b

a

fn(x) · dx ≤
∫ b

a

lim fn(x) · dx.

It follows that lim inf
∫ b
a
fn(x) · dx = lim sup

∫ b
a
fn(x) · dx, i.e., lim

∫ b
a
fn(x) · dx

exists and equals
∫ b
a

lim fn(x) · dx. �

Exercise 8 (Mean Convergence Theorem) (Answer page 34)
Under the assumptions of the Dominated Convergence Theorem, show that the
functions f − fn are Lebesgue integrable and

lim
n→∞

∫ b

a

|f(x)− fn(x)| · dx = 0.

For the next example we need a corollary of the Dominated Convergence
Theorem.

Theorem 26
Let f : [a, b]→ R be such that

|f(x)| ≤ h(x), for all x ∈ [a, b],

for some h integrable on [a, b]. Suppose that f is integrable on [r, b], for every
a < r < b. Then f is integrable on [a, b] and∫ b

a

f(x) · dx = lim
r→a+

∫ b

r

f(x) · dx.

Moreover, if b = r0 > r1 > r2 > . . . and limk→∞ rk = a, then∫ b

a

f(x) · dx =

∞∑
k=0

∫ rk

rk+1

f(x) · dx.

Proof: We define fk by

fk(x) =

{
f(x) for rk ≤ x ≤ b,
0 otherwise.

Then each fk is integrable on [a, b], also |fk(x)| ≤ h(x), and limk→∞ fk(x) =
f(x), for all x ∈ [a, b]. By the dominated convergence theorem, f is integrable
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on [a, b] and ∫ b

a

f(x)dx = lim
k→∞

∫ b

a

fk(x)dx

= lim
k→∞

∫ b

rk

f(x) · dx

= lim
k→∞

k−1∑
i=0

∫ ri

ri+1

f(x) · dx

=

∞∑
i=0

∫ ri

ri+1

f(x) · dx.

�

Example
We show in this example that the function f defined by

f(x) =

{
1
x sin( 1

x ) if x 6= 0;

0 if x = 0

is integrable on [0, 1], but not Lebesgue integrable on [0, 1].
We first show that f is not Lebesgue integrable on [0, 1]. Assume, for a

contradiction, that |f | is integrable on [0, 1]. Let ak = 1
kπ and note that

[0, 1] = {0} ∪
∞⋃
k=1

(ak+1, ak] ∪ (a1, 1].

Let n ≥ 1. By monotonicity and additivity, we have∫ 1

0

1

x

∣∣∣∣sin( 1

x

)∣∣∣∣ · dx ≥ ∫ a1

an

1

x

∣∣∣∣sin( 1

x

)∣∣∣∣ · dx =

n−1∑
k=1

∫ ak

ak+1

1

x

∣∣∣∣sin( 1

x

)∣∣∣∣ · dx.
We use the substitutions u = 1

x and v = u− kπ to deduce∫ ak

ak+1

1

x

∣∣∣∣sin( 1

x

)∣∣∣∣ · dx =

∫ kπ

(k+1)π

u| sin(u)|
(
− 1

u2

)
· du

=

∫ π

0

1

v + kπ
sin(v) · dv

≥ 1

(k + 1)π

∫ π

0

sin(v) · dv =
2

(k + 1)π
.

Hence ∫ 1

0

1

x

∣∣∣∣sin( 1

x

)∣∣∣∣ · dx ≥ 2

π

n−1∑
k=1

1

k + 1
, for each n ∈ N.

But
∑∞
k=1

1
k+1 =∞, so

∫ 1

0
1
x

∣∣sin( 1
x )
∣∣ · dx =∞, a contradiction.
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We now show that f is integrable: The function t 7→ 1
t sin( 1

t ) is continuous
on (0, 1], and integration by parts gives

∫ 1

x

1

t
sin

(
1

t

)
·dt =

∫ 1

x

(−t)
(
− 1

t2
sin

(
1

t

))
·dt = t cos

(
1

t

)∣∣∣∣∣
1

x

−
∫ 1

x

cos

(
1

t

)
·dt,

for each 0 < x ≤ 1. As t 7→ cos( 1
t ) is bounded by the constant function with

value 1, which is integrable on [0, 1], it follows from the corollary to the dominated

convergence theorem that t 7→ cos( 1
t ) is integrable on [0, 1] and

∫ 1

0
cos( 1

t ) · dt =

limx→0+

∫ 1

x
cos( 1

t ) ·dt. The function G(x) = −
∫ 1

x
cos( 1

t ) ·dt is thus continuous at

0. As x 7→ cos( 1
x ) is continuous on (0, 1], we have G′(x) = cos 1

x , for all x ∈ (0, 1],
by the Fundamental Theorem of Calculus for continuous functions. We now let
F be defined by

F (x) =

{
x cos( 1

x ) +G(x) for 0 < x ≤ 1,

0 if x = 0.

Note that F is continuous on [0, 1] and

F ′(x) =
1

x
sin

(
1

x

)
= f(x), for 0 < x ≤ 1.

So f is integrable by the strong version of the Fundamental Theorem of Calculus
(Theorem 19).

With this example we end the systematic development of the theory of in-
tegration. Our goal in the next few pages is to define some concepts that play
a key role in the traditional expositions of Lebesgue integral.

Definition 9
A collection Σ of subsets of a set S is called an algebra if

(1) S ∈ Σ;

(2) If X,Y ∈ Σ, then X ∪ Y ∈ Σ;

(3) If X ∈ Σ, then S \X ∈ Σ.

Exercise 9 (Answer page 34)
Let Σ be an algebra of subsets of S and X1, . . . , Xn ∈ Σ. Show that

(1) X1 ∪ . . . ∪Xn ∈ Σ,

(2) X1 ∩ . . . ∩Xn ∈ Σ,

(3) If X,Y ∈ Σ, then X \ Y ∈ Σ.
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Definition 10
An algebra Σ is called a σ-algebra if⋃

n≥1

Xn ∈ Σ,

for every sequence (Xn)n≥1 of sets from Σ.

Exercise 10 (Answer page 34)
Let Σ be a σ-algebra. Show that if Xn ∈ Σ (n = 1, 2, . . . ), then

⋂
n≥1Xn ∈ Σ.

Definition 11
The characteristic function χA of a set A is the function defined by

χA(x) =

{
1 if x ∈ A,
0 otherwise.

Definition 12
A set A ⊆ [a, b] is Lebesgue measurable if χA is integrable on [a, b].
We denote byM[a, b] the collection of all Lebesgue measurable subsets of [a, b].

With these definitions we have:

Theorem 27
Let [a, b] be a closed interval. Then

(1) M[a, b] is a σ-algebra.

(2) For every a ≤ c ≤ d ≤ b, the closed interval [c, d] is Lebesgue measurable.

(3) All null subsets of [a, b] are Lebesgue measurable.

Proof: If X,Y ∈ M, then X ∪ Y ∈ M: χX∪Y = max(χX , χY ), so it is
integrable by Theorem 23.

If Xk ∈ M for k = 1, 2, . . ., we let Yn = X1 ∪ . . . ∪Xn. By the above and
induction, Yn ∈M. We note that (χYn)n≥1 is increasing and χX = limn→∞ χYn .
So χX is integrable, by monotone convergence theorem.

The remaining claims are left as an exercise. �
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Definition 13
Let Σ be an algebra of subsets of S. A function µ : Σ → [0,∞] defined for all
sets in Σ is called a finitely additive measure on Σ if

(1) µ(X) ≥ 0 for all X ∈ Σ;

(2) µ(∅) = 0, µ(S) > 0;

(3) µ(X ∪ Y ) = µ(X) + µ(Y ) whenever X and Y are disjoint.

If, in addition, Σ is a σ-algebra and

(4) µ(
⋃
k≥1Xk) =

∑
k≥1 µ(Xk) holds for every sequence (Xk) of pairwise

disjoint sets from Σ,

then µ is called a σ-additive measure on Σ.

Observe that an additive measure is monotone: If X ⊆ Y, with X,Y ∈ Σ
then µ(X) ≤ µ(Y ). To see this, write Y = X ∪ (Y \X) (recall that Y \X ∈ Σ),
so µ(Y ) = µ(X) + µ(Y \X) ≥ µ(X).

Definition 14
The Lebesgue measure is the function m :M[a, b]→ R defined by

m(A) =

∫ b

a

χA(x)dx.

The next theorem justifies the name. The proof is left as an easy exercise.

Theorem 28
Let [a, b] be a closed interval. Then

(1) The Lebesgue measure m is a σ-additive measure on M[a, b].

(2) For a ≤ c < d ≤ b, we have m([c, d]) = d− c.

(3) If E is a null set, then m(E) = 0.

Theorem 29
For every set A ∈ M[a, b] and every ε > 0 there is an open set O such that
A ⊆ O and m(O)−m(A) ≤ ε.

Proof: Let ϕ be a positive function. We show first that there is a (finite or
infinite) sequence (Ik) of non-overlapping closed intervals, and a sequence of
tags (tk), such that each

tk ∈ Ik ∩A, `(Ik) < ϕ(tk), and A ⊆
⋃
Ik.

We start with I = [a, b] and split it into two subintervals, I0 = [a,m] and
I1 = [m, b], where m = (a + b)/2 is the midpoint of I. Similarly, we split I0
into I00 and I01 using the midpoint of I0, and I1 into I10 and I11. Continuing
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in this manner, we construct a countably infinite system of intervals Iη (η is a
finite sequence of 0 and 1) such that

[a, b] =
⋃

`(η)=n

Iη and `(Iη) =
b− a

2n
, if η has length n.

For each x ∈ A, we can find n such that (b−a)/2n < ϕ(x), and therefore we can
find a sequence η = η(x) of length n such that Iη ⊆ (x − ϕ(x), x + ϕ(x)). We
let tη = x. Let (ηk) be an enumeration of the sequences η we have used, making
sure that no sequence ηk extends ηn, for k > n. Then the intervals Ik = Iηk are
non-overlapping (by removing the extensions, we made sure that no interval Ik
in the list is contained in an interval In for n < k) and their union contains A.
Letting tk = tηk , all the requirements are satisfied.

The context is specified by A. Let ϕ be a positive function as in the proof of
Theorem 7, i.e., every partition (P, T ) subordinate to ϕ is superfine, and hence

∑
(χA;P, T ) '

∫ b

a

χA(x) · dx = m(A).

Let (Ik) and (tk) correspond to ϕ as in the first paragraph. It is clear that,
for each n ∈ N, (Ik)nk=1 and (tk)nk=1 determine a partially tagged subpartition
(Pn, Tn) of [a, b] subordinate to ϕ (hence superfine). We write Ik = [xk, xk+1].

Then

n∑
k=1

`(Ik) =
∑

(χA;Pn, Tn) (since each tk ∈ A)

'
n∑
k=1

∫ xk+1

xk

χA(x) · dx (Exercise 3)

=

n∑
k=1

m(A ∩ Ik) ≤ m(A).

Now A ⊆
⋃
Ik, and therefore ∑

`(Ik) ' m(A).

Let ε > 0 be observable. To complete the proof, it remains only to replace
each closed interval Ik = [xk, xk+1] by a slightly larger open interval Jk =
(xk − ε

2k+2 , xk+1 + ε
2k+2 ), and let O =

⋃
Jk. Then A ⊆ O and

m(O) ≤
∑

m(Jk) =
∑

`(Ik) +
∑ ε

2k+1
≤ m(A) + ε.

This is true for each observable ε > 0, so for each ε > 0 by closure. �

Theorem 30
If m(N) = 0, then N is a null set. If {Nk}∞k=1 are null sets, then

⋃∞
k=1Nk is a

null set.

Proof: This is a corollary of the preceding theorem. �
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This result establishes that our measurable sets coincide with the usual ones,
and that null sets are precisely the sets of measure 0.

We give one more definition.

Definition 15
A function f : [a, b]→ R is (Lebesgue) measurable if, for all c < d, the set

{x ∈ [a, b] : c ≤ f(x) ≤ d}

is Lebesgue measurable.

Every nonnegative measurable function is a limit of an increasing sequence
of simple measurable functions, i.e., functions of the form

n∑
i=1

ai · χAi
,

where Ai ⊆ [a, b] are measurable, and ai are real numbers (for the proof, see
e.g. H. R. Royden, Real Analysis, Third Edition, Prentice Hall, 1988.) It is an
easy exercise to show that simple functions are Lebesgue integrable and∫ b

a

(
n∑
i=1

ai · χAi
(x)

)
· dx =

n∑
i=1

ai ·m(Ai).

By the Monotone Convergence Theorem it follows that a nonnegative measur-
able function is integrable if and only if there is an increasing sequence (fk)k≥1
of simple measurable functions such that

lim
k→∞

fk = f and
(∫ b

a

fk(x)dx
)
k≥1

is bounded.

Readers familiar with the usual approaches to Lebesgue integral should be
able to conclude from the above observations that functions Lebesgue integrable
according to the traditional definitions are precisely the functions Lebesgue
integrable according to our definition, and the values of the integrals are the
same.

In this book we restricted ourselves to the theory of integration for functions
defined on a bounded interval [a, b]. It is important to be able to integrate
functions defined on R (or a subset of R), but this is now easy. We give only
the key definitions.

Definition 16
A function f : R → R is integrable on R if there is an observable number R
such that ∫ s

r

f(x) · dx ' R, for all r ' −∞, s ' ∞.

A set A ⊆ R is measurable if

A ∩ [r, s] is measurable, for all r ' −∞, s ' ∞.
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We leave it as a challenging exercise for the reader to formulate and prove
analogs of the results of sections 2 and 3 for R in place of [a, b]. The main differ-
ence is that bounded measurable functions on R are not necessarily integrable.
There are even measurable sets A for which the characteristic function is not
integrable (for example, A = R).

4 Lebesgue Theorem

We finish with a classical result.

Theorem 31 (Lebesgue Theorem)
A bounded function f : [a, b] → R is Riemann integrable if and only if it is
continuous almost everywhere.

We first introduce a characterization of continuous functions that is used in
the proof.

Definition 17
Let f : A → R be a function. Let a be a limit point of A and let L be a real
number. We say that L is a limit value of f at a if L ' f(x) for some x ' a,
x 6= a, x ∈ A.

The context of the previous definition is a,A, f, L.

Theorem 32
Let f : A→ R be a function, a be a limit point of A, and L be a real number.
The following conditions are equivalent:

(1) limx→a f(x) = L.

(2) L is the unique limit value of f at a and f(x) is limited for all x ' a,
x 6= a, x ∈ A.

Proof:
We show (1) implies (2). The context is given by f, a,A, and L. Assume

limx→a f(x) = L. Then L ' f(x) for all x ' a, x 6= a, x ∈ A. But such x exist
since a is a limit point of A. Hence, L is a limit value of f at a and L is limited.
Let L′ be another limit value. Consider an extended context f, a,A, L, L′, and

write
+' when working relative to it. By definition, there is x′

+' a, x′ 6= a, such

that f(x′)
+' L′. But f(x)

+' L also, by Closure, so L
+' L′. This shows that

L = L′ since L,L′ are observable relative to f, a,A, L, L′.
To see that (2) implies (1), notice that the assumed unique limit value L of

f at a is observable relative to f, a,A, by Closure. If x ' a, x 6= a, x ∈ A, then
f(x) is limited, and so the observable neighbor of f(x) is defined and is also a
limit value of f at a, i.e., it is equal to L. Hence L ' f(x), which shows that
limx→a f(x) = L. �

Definition 18
Let f : A→ R be a function and a a limit point of A. We let La denote the set
of all limit values of f at a.
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The set La is observable relative to f, a,A.

Theorem 33
Let f : A→ R be a function and a be a limit point of A. The set La is closed.

Proof: The context is given by f, a,A. Let M be observable and such that

M ' L for L ∈ La. Consider the extended context f, a,A, L and write
+' when

working relative to it. By definition L
+' f(x) for some x

+' a, x 6= a, x ∈ A.
But then M ' f(x) where x ' a, x 6= a, x ∈ A, so M ∈ La. �

Definition 19
Let I be an interval and let f : I → R be bounded.

(1) We say that the function f↑ : I → R defined by

f↑(x) = max(Lx ∪ {f(x)}), for each x ∈ I,

is the upper envelope of f .

(2) We say that the function f↑ : I → R defined by

f↑(x) = min(Lx ∪ {f(x)}), for each x ∈ I,

is the lower envelope of f .

(3) We say that the function ω : I → R defined by

ω(x) = f↑(x)− f↓(x), for each x ∈ I,

is the variation of f .

We note that the functions f↑, f↓ and ω are defined on I because the sets
Lx are closed and bounded. Further, all these functions and observable relative
to f, I.

Theorem 34
A bounded function f : I → R is continuous at a ∈ I if and only if ω(a) = 0.

Proof: If f is continuous at a, then f(a) is the only limit value of f at a, and
f↑(a) = f↓(a) = f(a), so ω(a) = 0. Conversely, if f↑(a) = f↓(a), then f(a) is
the only limit value of f at a. (Note that f has at least one limit value at a,
because f(x) is limited, for any x ' a.) As f is bounded, limx→a f(x) = f(a).

�

Proof of Lebesgue Theorem:
Let D = {x ∈ [a, b] : f is not continuous at x}. This set is observable.
Assume first that f is Riemann integrable. Let

Dk = {x ∈ [a, b] : ω(x) ≥ 1

k
}, for k ∈ N.
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By Theorem 34, D =
⋃∞
k=1Dk, so it suffices to show that each Dk is a null set.

The context contains f, a, b and k.
Recall (AUN, Chapter 9) that, if f is Riemann integrable on [a, b], then there

exists a fine partition P such that

S(P)− s(P) =

n−1∑
i=0

(Fi − fi) · dxi ' 0,

where Fi (fi, resp.) is the supremum (infimum, resp.) of f on the interval
[xi, xi+1]. Let K = {i : Fi − fi ≥ 1

k}; as

S(P)− s(P) ≥
∑
i∈K

(Fi − fi) · dxi ≥
1

k
·
∑
i∈K

dxi,

and 1
k is observable, it follows that

∑
i∈K dxi ' 0. Finally, we note that Dk ⊆⋃

i∈K(xi, xi+1) ∪ {x0, . . . , xn}. It follows that Dk is a null set.

For the converse, assume that D is a null set. Let {Jk}∞k=1 be a sequence of
open intervals such that

D ⊆
∞⋃
k=1

Jk and
∑

`(Jk) ' 0.

We now augment the context by the sequence {Jk}∞k=1, and let (P, T ) be any
partition of [a, b] superfine relative to this augmented context. In the notation
of the first part of this proof, we will show that

n−1∑
i=0

fi · dxi '
n−1∑
i=0

Fi · dxi (*)

This is enough (see the direction Darboux ⇒ Riemann of AUN, Theorem 139).
Let

I1 = {i : ti ∈ D} and I2 = {i : ti /∈ D}.

By Theorem 9, for each i ∈ I1 there is ki such that [xi, xi+1] ⊆ Jki . As the
intervals of the partition are non-overlapping, we conclude that

∑
i∈I1 dxi ≤∑∞

k=1 `(Jk) ' 0 (see the argument in the proof of Theorem 19), and hence∑
i∈I1(Fi − fi) · dxi ' 0, i.e.,

∑
i∈I1 Fi · dxi '

∑
i∈I1 fi · dxi. Now for i ∈ I2 the

function f is continuous at ti, hence f(x)−f(ti) is ti-ultrasmall (or 0) for every
x ∈ [xi, xi+1]. This implies that Fi ' fi for i ∈ I2 and thus

∑
i∈I2 Fi · dxi '∑

i∈I2 fi · dxi as usual. Together we have (*). �
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Appendix

The axioms of RBST do not give a complete description of the universe of
relative set theory. (See KH, Relative set theory: Internal view, Journ. Logic
and Analysis 1:8, 2009, 1 -108.) Other axioms of some practical usefulness can
be added to RBST. We give an example that is used in the proof of Theorem 17.

Local Transfer Principle.
Let P(x1, . . . , xk; Sα) be any statement in the ∈–S-language.

If P(x1, . . . , xk; Sα) holds, then there exists γ A α such that P(x1, . . . , xk; Sβ)
holds for all β with α v β v γ.

The point is that x1, . . . , xk are arbitrary; they do not have to be observable
relative to α!

Also, for every α @ β there exists N ∈ N which is ultralarge relative to α
and observable relative to β.
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Answers to Exercises.

Answer to Exercise 1, page 4
(1) Let r and s be a-accessible. Let f, g be observable and such that r = f(a)

and s = g(a). Then r ± s = (f + g)(a), r · s = (f · g)(a) and r/s = (f/g)(a) (if
s = g(a) 6= 0). But f ± g, f · g, and f/g are observable by Closure, so r ± s,
r · s, and r/s are a-accessible.

(2) Let x and y be a-limited. Let r, s be positive a-accessible numbers such
that |x| ≤ r and |y| ≤ s. Then |x±y| ≤ |x|+ |y| ≤ r+s and r+s is a-accessible
so x± y is a-limited. Also |x · y| = |x| · |y| ≤ r · s, and r · s is a-accessible so x · y
is a-limited.

(3) Let h, k be a-ultrasmall. Let r > 0 be a-accessible. Then r/2 is a-
accessible (since 2 is a-accessible). Thus |h± k| ≤ |h|+ |k| ≤ r/2 + r/2 = r. So
h ± k is a-ultrasmall or 0. Let x be a-limited. Let r > 0 be a-accessible such
that |x| ≤ r. Let s > 0 be a-accessible. Then r/s > 0 is a-accessible by (1).
Now |x · h| = |x| · |h| ≤ r · r/s = r. This shows that x · h is a-ultrasmall or 0.

Answer to Exercise 2, page 5
The proof is identical to the proof of the straddle version from the Increment

Equation, but one uses the operations on a-ultrasmalls instead.

Answer to Exercise 3, page 13
The context is given by f, a, b. Let (P, T ) be a superfine partially tagged

partition of [a, b]. Let ε > 0 be observable. By Closure, we can find a positive
observable δ like in the Saks-Henstock lemma. Since (P, T ) is superfine, it is
subordinate to δ so∣∣∣∑

j∈J
f(tj) · dxj −

∑
j∈J

∫ xj+1

xj

f(x) · dx
∣∣∣ < ε.

Since ε > 0 was arbitrary, the quantity between the absolute values is ultrasmall
or 0 and so

∑
j∈J f(tj) ·dxj '

∑
j∈J

∫ xj+1

xj
f(x) ·dx. The second claim is proved

similarly.

Answer to Exercise 4, page 18
Assume that f+ and f− are generalized Riemann integrable. Then by lin-

earity, f = f+ − f− and |f | = f+ − f− are generalized Riemann integrable.

For the converse, notice that f+ = |f |+f
2 and f− = |f |−f

2 . Hence, if |f | and
f are generalized Riemann integrable, then so are f+ and f−, by linearity.

Answer to Exercise 5, page 19
This is clear since f and |f | are integrable on [a, b] if and only if they are

integrable on [a, c] and [c, b].

Answer to Exercise 6, page 20
If one of the functions fn is Lebesgue integrable then they all are by Theorem

22, so in particular f+n and f−n are integrable, so also −f−n . But f+(x) =
limn→∞ f+n (x) and −f−(x) = limx→∞−f−n (x). By the Monotone Convergence
Theorem applied to f+ and −f− we have that f+ and −f− are integrable, so
f+ and f− are integrable. Hence f is Lebesgue integrable.
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Answer to Exercise 7, page 20
If f(x) = g(x) almost everywhere, then |f(x)| = |g(x)| almost everywhere,

so the theorem follows from the corresponding theorem for generalized Riemann
integral, applied to f , g, and to |f |, |g|.

Answer to Exercise 8, page 22
Since f is Lebesgue integrable, then f−fn is Lebesgue integrable for every n.

Let gn = |f − fn|, for n = 1, 2, . . . . Then each gn is integrable and the sequence
tends to 0. Also 0 ≤ gn(x) ≤ max{h1(x), h2(x)}, and both 0 and max{h1, h2}
are integrable. Hence, by the Dominated Convergence Theorem, we have

lim
n→∞

∫ b

a

|f − fn| · dx = lim
n→∞

∫ b

a

gn(x) · dx =

∫ b

a

0 · dx = 0.

Answer to Exercise 9, page 24
(1) and (2) are simple inductions on the definition. For (3) notice that

X \Y = X ∩ (S \Y ). But S \Y ∈ Σ if Y ∈ Σ, and since X ∈ Σ, the intersection
X ∩ (S \ Y ) ∈ Σ also.

Answer to Exercise 10, page 25
It is enough to show that the complement of

⋂∞
n=1Xn belongs to Σ. But

S\
⋂∞
n=1Xn =

⋃∞
n=1(S\Xn). Now S\Xn ∈ Σ if Xn ∈ Σ, and so

⋃∞
n=1(S\Xn) ∈

Σ since Σ is a σ-algebra.
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