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Introduction

The goal of these notes is to give a self-contained proof of the fact that RBST,
as formulated in [6], is a conservative extension of ZFC. Some familiarity with
ultrafilters and ultraproducts would be very helpful, even though we give all the
definitions and prove the needed results here. The one exception is the proof of
the existence of good ultrafilters, for which we refer to [2].

Bounded Set Theory

The nonstandard set theory BST (Bounded Set Theory) is formulated in a
language with a binary predicate symbol ∈ and a unary predicate symbol S.

Let P be any ∈-statement. Then PS denotes the relativization of P to S,
i.e., the statement obtained from P by restricting all quantifiers to S. In more
detail, this means replacing each occurrence of the existential quantifier ∃ in
P by ∃S, where (∃S) . . . is shorthand for (∃x)(S(x) ∧ . . .), and replacing each
occurrence of the universal quantifier ∀ by ∀S, where (∀S) . . . is shorthand for
(∀x)(S(x)→ . . .).

The notation x̄ is used as shorthand for a list of variables x1, . . . , xk.

The axioms of BST are:

• ZFC in S:
PS, where P is any axiom of ZFC.

• Boundedness:
(∀x)(∃Sy)(x ∈ y).

• Transfer:

(∀Sx1) . . . (∀Sxk) (PS(x1, . . . , xk)⇔ P(x1, . . . , xk))

where P(x1, . . . , xk) is any statement in the ∈-language.

• Standardization:

(∀x̄)(∀x)(∃Sy)(∀Sz)(z ∈ y ⇔ z ∈ x ∧ P(z, x, x̄))

where P(z, x, x̄) is any statement in the ∈-S-language.
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• Bounded Idealization:

(∀x̄)(∀SA)[(∀Sa ∈ Pfin(A))(∃y)(∀x ∈ a) P(x, y,A, x̄)

⇔ (∃y)(∀Sx ∈ A)P(x, y,A, x̄)]

where P(x, y,A, x̄) is any statement in the ∈-language; Pfin(A) is the set
of all finite subsets of A.

Nelson’s Internal Set Theory IST differs from BST as follows:

• Boundedness is dropped;

• Bounded Idealization is replaced by

Idealization:

(∀x̄)[(∀S finite a)(∃y)(∀x ∈ a) P(x, y, x̄)⇔ (∃y)(∀Sx)P(x, y, x̄)]

where P(x, y, x̄) is any statement in the ∈-language.

A thorough discussion of the relative merits of IST and BST can be found
in Kanovei and Reeken’s monograph [7]. They also show (Theorem 3.4.5) that
the class B = {x | (∃Sy)(x ∈ y} of bounded sets gives an interpretation for BST
in IST. For our purposes, the main advantage of BST is that it proves the
Reduction Theorem (see Appendix) for all statements, not just the bounded
ones. This allows us to give a simple formulation of the Stability Principle,
which underlies the presentation of analysis in [6].

Relative Bounded Set Theory

Relative Bounded Set Theory RBST is formulated in a language with two
binary predicate symbols, ∈ and v. We read x v y as “x is observable (or:
standard) relative to y.”

The basic axiom of RBST is Relativization.

Relativization:

(1) (∀p)(p v p);

(2) (∀p)(∀q)(∀r)(p v q ∧ q v r → p v r);

(3) (∀p)(∀q)(p v q ∨ q v p);

(4) (∀p)(0 v p);

(5) (∀p)(∃q)(p v q ∧ ¬ q v p).

For the statements of the remaining axioms we use the notation Sp(q) in
place of q v p. Intuitively, Sp is the universe of objects observable relative to p,
and we also write q ∈ Sp for Sp(q).

RBST postulates that the axioms of BST, to wit, ZFC in S, Boundedness,
Transfer, Standardization and Bounded Idealization, hold with S replaced by Sp,
for all p.

2



Péraire formulated RIST, a relativized version of IST, in [10]. In Section 4
we use a subtheory of RIST denoted there RIST−.

RIST− postulates

• Relativization

• For all p, ZFC in S, Transfer, Idealization and Inner Standardization
with S replaced by Sp.

Inner Standardization is the followig special case of Standardization:

Inner Standardization: (∀x)(∃Sy)(∀Sz)(z ∈ y ⇔ z ∈ x).

It is not clear whether RIST− is truly weaker than RIST, but it can be
shown that RBST proves the bounded analogs of all axioms of RIST, such as
the multi-level Idéalisation Contrôlée.

Structure of the exposition

In Sections 1 and 2 we prove that IST is a conservative extensionof ZFC by
the method from [7], Section 4.4; the original proof in Nelson [9] is different.
As mentioned above, BST has an interpretation in IST, so conservativity of
BST over ZFC follows. This result (and much more) was proved directly in
the author’s [3].

In Sections 3 and 4 we show that RIST− is a conservative extension of ZFC.
In the main outline, the proof follows the ideas of the proof by Péraire [10] of
an analogous result for RIST, but there are many differences in detail.

In Section 5 we prove that the bounded sets of RIST− provide an interpre-
tation of RBST in RIST−, and thus establish conservativity of RBST over
ZFC. This is also an immediate consequence of the results in [4] and [5], where
relative consistency of much stronger theories (FRBST and GRIST, respec-
tively) has been established by different, necessarily much more complicated,
methods.

The Appendix contains the proof of the Reduction Theorem for BST and
derives the consequences needed in Section 5.

3



1 Ultrafilters and ultrapowers.

We work in ZFC unless stated otherwise. As is customary, we use classes to
denote extensions of statements (formulas) of ZFC.

Definition 1
A filter over I is a collection F of subsets of I such that

(1) ∅ /∈ F ; I ∈ F ;

(2) If X ∈ F and X ⊆ Y ⊆ I, then Y ∈ F ;

(3) If X,Y ∈ F , then X ∩ Y ∈ F .

An ultrafilter over I is a maximal filter over I (in the ordering of filters by
inclusion).

It is an immediate consequence of Zorn’s Lemma that every filter over I can
be extended to an ultrafilter over I.

Exercise 1 The following statements are equivalent:

(1) U is an ultrafilter over I;

(2) U is a filter over I with the property:
If X ∪ Y ∈ U , then X ∈ U or Y ∈ U ;

(3) U is a filter over I with the property:
For every X ⊆ I, either X ∈ U or I \X ∈ U .

Intuitively, an ultrafilter partitions all subsets of I into two classes: the
“large” sets (those in U) and the “small” sets (those not in U).

Example

(1) For a fixed i ∈ I, Ui = {X ⊆ I | i ∈ X} is an ultrafilter over I; it is called
the principal ultrafilter generated by i.

(2) Let I be infinite; then Fω = {X ⊆ I | I \X is finite} is a filter; it is called
the free filter over I.

Exercise 2 An ultrafilter U over I is nonprincipal if and only if U ⊇ Fω.
Hence over every infinite set I there exist nonprincipal ultrafilters (in fact, there

are 22|I| of them).

Definition 2
An ultrafilter U over I is ω-incomplete if there exists a sequence (Xn)n∈N such
that each Xn ∈ U and

⋂
n∈NXn = ∅.

Exercise 3 Every nonprincipal ultrafilter over N is ω-incomplete.
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Let U be a fixed ultrafilter over I. We use it to construct an interpretation
for the language of ZFC (the ∈-language).

Definition 3

VU = VI = {f : f is a function, dom f = I and ran f ⊆ V}.

For f, g ∈ VU let
f =U g iff {i ∈ I : f(i) = g(i)} ∈ U ;

f ∈U g iff {i ∈ I : f(i) ∈ g(i)} ∈ U.

The ultrapower of V modulo U is the triple (VU ,=U ,∈U ).

If P(x1, . . . , xk) is any ∈-statement, we let PU (x1, . . . , xk) denote the state-
ment obtained from P by replacing all occurences of = and ∈ by =U and ∈U ,
respectively, and restricting the range of all quantifiers to VU , [that is, replacing
(∀x) . . . with (∀x)(x ∈ VU ⇒ . . .) and (∃x) . . . with (∃x)(x ∈ VU ∧ . . .); this may
involve renaming some bound variables, if necessary or convenient.] We read
PU as “P holds in the ultrapower.”

The ultrapower provides an interpretation of the language of ZFC. Intu-
itively, we think of elements of VU as “sets in the sense of the ultrapower,”
f =U g means that “f and g are equal in the sense of the ultrapower,” and
f ∈U g means that “f is an element of g in the sense of the ultrapower.”

The fundamental fact about ultrapowers now takes the following form ( Loś
Theorem):

Theorem 1
Let P(x1, . . . , xk) be an ∈-statement. For all f1, . . . , fk ∈ VU ,

PU (f1, . . . , fk)⇔ {i ∈ I : P(f1(i), . . . , fk(i))} ∈ U.

Proof: By induction on the complexity of P.
If P is an atomic statement x` = xm, (f` = fm)U is the statement f` =U fm,

which holds if and only if {i ∈ I : f`(i) = fm(i)} ∈ U . The case of x` ∈ xm is
similar.

The properites of an ultrafilter easily imply that if the claim is true for P1

and P2, then it is also true for ¬P1 and P1 ∧ P2.
If P is of the form (∃y)Q(x1, . . . , xk, y), ((∃y)Q(f1, . . . , fk, y))U is the state-

ment (∃g ∈ VU )QU (f1, . . . , fk, g)). Let g ∈ VU be such that QU (f1, . . . , fk, g).
By the inductive assumption, {i ∈ I : Q(f1(i), . . . , fk(i), g(i))} ∈ U , hence
{i ∈ I : (∃x)Q(f1(i), . . . , fk(i), x)} ∈ U , i.e., {i ∈ I : P(f1(i), . . . , fk(i))} ∈ U .
Using the Axiom of Choice, the argument can be reversed. �

In particular, PU ⇔ P holds for any sentence (i.e., a statement with no
parameters) P, so all axioms of ZFC hold in the ultrapower.

The relation =U is a congruence with respect to ∈U . This suggests the
possibility of taking equivalence classes modulo =U , in order to obtain an in-
terpretation where = is interpreted by true equality. To avoid some technical
issues, we forego this step and work with elements of VU rather than their
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equivalence classes, similarly as one can work with fractions rather than their
equivalence classes (rational numbers).

We next extend this interpretation to the ∈-S-language.

Definition 4
For x ∈ V, let kU,x be the constant function on I with value x; i.e., kU,x(i) = x
for all i ∈ I. Let

SU = {f ∈ VU | f =U kU,x for some x ∈ V}.

Clearly x = y ⇔ kU,x =U kU,y and x ∈ y ⇔ kU,x ∈U kU,y, so the mapping
kU : x 7→ kU,x is an isomorphism of (V,=,∈) and (SU ,=U ,∈U ), in an obvious
sense. If P is a statement in the ∈-language, PSU denotes the statement obtained
from PU by restricting all quantifiers to SU . The above isomorphism implies
that

(∀x1, . . . , xk)(P(x1, . . . , xk)⇔ PSU (kU,x1 , . . . , kU,xk
)).

We read f ∈ SU as “f is standard in the sense of the ultrapower.” The
extended ultrapower of V modulo U is the quadruple (VU ,=U , ∈U ,SU ). It
is an interpretation for the ∈-S-language. If P is a statement in this language, we
let PU be the statement where, in addition, every occurence of S(x) is replaced
by x ∈ SU .

Our next goal is to show that all of the axioms of IST (see Appendix),
except for Idealization, hold in the extended ultrapower of V.

Theorem 2
Let U be an ultrafilter over I. Then ZFC in S, Transfer and Standardization
hold in the extended ultrapower of V modulo U .

Proof: Let P be a statement in the ∈-language. We observe that (PS)U is
equivalent to PSU . If P is an axiom of ZFC (written as a sentence, i.e., with
no free variables), then (PS)U ⇔ PSU ⇔ P, so P holds in the standard universe
of the extended ultrapower.

To prove that Transfer holds in the extended ultrapower, let f1, . . . , fk ∈ SU .
Let f1 =U kU,x1

, . . . , fk =U kU,xk
. We have

(PS(f1, . . . , fk))U ⇔ (PS(kU,x1
, . . . , kU,xk

))U ⇔ PSU (kU,x1
, . . . , kU,xk

)⇔

⇔ P(x1, . . . , xk)⇔ PU (kU,x1 , . . . , kU,xk
)⇔ PU (f1, . . . , fk).

It remains to prove that Standardization holds in the extended ultrapower.
Let P(x, y, x1, . . . , xk) be a statement in the ∈-S-language. Given g, f1, . . . , fk ∈
VU such that ran g ⊆ A, consider B = {x ∈ A : PU (kU,x, f1, . . . , fk)}. Then
kU,B ∈ SU and (∀f ∈ SU )(f ∈U kU,B ⇔ f ∈U g ∧ PU (f, f1, . . . , fk)). This is
exactly what Standardization requires. �

If U is a principal ultrafilter generated by i ∈ I, then f =U kU,f(i) for every
f ∈ VU , so SU = VU ; in the extended ultrapower of V modulo a principal U
there are no nonstandard sets.
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Theorem 3
If U is ω-incomplete, then the extended ultrapower of V modulo U has nonstan-
dard natural numbers.

Proof: Let (Xn)n∈N be such that each Xn ∈ U and
⋂
n∈NXn = ∅; without

loss of generality we can assume that Xn ⊇ Xn+1 holds for all n [replace Xn by⋂
m≤nXm] and X0 = I. Define f on I by: d(i) = n iff i ∈ Xn \ Xn+1. Then

d ∈U kU,N and d 6=U kU,n for any n ∈ N, because {i ∈ I | d(i) = kU,n(i)} =
Xn \Xn+1 /∈ U . �

However, the following exercise shows that the extended ultrapower of V
modulo U never satisfies even Bounded Idealization (see Appendix), and there-
fore cannot be an interpretation for the full IST.

Exercise 4 Let J be an infinite set of cardinality κ. Let Fκ = {X ⊆ J |
|J \X| < κ}. Show that Fκ is a filter over J .
Let V ⊇ Fκ be an ultrafilter over J (such ultrafilters are called uniform). Show
that if κ > |I|, then there is no f ∈ VU such that f ∈U kU,X holds for all X ∈ V .
[Hint: Assume to the contrary that such f exists. Since f ∈U kU,J , the set
{i ∈ I | f(i) ∈ J} ∈ U . Let X = J ∩ ran f and show that X ∈ V . This is a
contradiction because |X| ≤ |I| < κ.]
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2 Relative consistency of IST.

In order to obtain an interpretation for full IST, we first produce a set-sized
interpretation of ZFC and then take the ultrapower of this interpretation,
modulo a suitable ultrafilter.

We recall von Neumann’s cumulative hierarchy of sets (Vα)α ordinal:

(1) V0 = ∅;

(2) Vα+1 = P(Vα);

(3) Vλ =
⋃
α<λVα for λ > 0 limit.

ZFC proves that V =
⋃
α ordinal Vα.

The theory ZFCϑ (see [7]) is formulated in the ∈-ϑ-language, where ϑ is a
constant symbol. Its axioms are

(1) All the axioms of ZFC, with the understanding that the symbol ϑ can
appear in the axioms of Separation and Replacement.

(2) ϑ > 0 is a limit ordinal.

(3) For every statement P(x1, . . . , xk) in the ∈-language (ϑ not allowed!),

(∀x1, . . . , xk ∈ Vϑ)(P(x1, . . . , xk)⇔ Pϑ(x1, . . . , xk)),

where Pϑ is obtained from P by restricting all quantifiers to Vϑ.

A consequence of the last item is that Pϑ holds for every axiom P of ZFC; in
other words, (Vϑ,=,∈) is an interpretation of ZFC in ZFCϑ [it is understood
that = and ∈ stand here for the restrictions of these relations to Vϑ]. For our
purposes it is important that the universe Vϑ of this interpretation is a set.

Note: One cannot prove in ZFCϑ that (Vϑ,=,∈) is a model of ZFC in the
sense of model theory. This would prove consistency of ZFC in ZFCϑ and, in
conjunction with the next theorem, contradict Gödel’s Second Incompleteness
Theorem.

Theorem 4
If ZFC is consistent, then ZFCϑ is consistent.

Proof: If ZFCϑ proved a contradiction, the proof would use only a finite list
of instances of axioms from group (3); say for the statements P1, . . . ,P`. But
the Reflection Principle of ZFC (see e.g. Kunen [8]) implies that there is a
limit ordinal θ > 0 such that (1), (2) and the instances of (3) for P1, . . . ,P`
hold for this θ. Hence a contradiction could be proved in ZFC. �

We now work in ZFCϑ and carry out the construction of the extended
ultrapower from Section 1, but with the proper class V replaced by the set Vϑ.

Thus the sets in the sense of the interpretation are functions with domain I
and values in Vϑ. The relations =U ,∈U and SU are now restrictions to VUϑ = VIϑ
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of the corresponding relations from Section 1. The extended ultrapower of
Vϑ modulo U is the quadruple (VUϑ ,=U , ∈U ,SU ).

Theorem 5
ZFC in S, Transfer and Standardization hold in the extended ultrapower of Vϑ

modulo U .

Proof: Repeat the arguments in Section 1 with Vϑ in the place of V. �

We complete the construction of an interpretation for IST by showing that
Idealization holds in the extended ultrapower of Vϑ modulo U for a suitable
choice of the ultrafilter U .

Let Pfin(I) denote the collection of all finite subsets of I.

Definition 5
Let B,C be functions defined on Pfin(I) and with values in the ultrafilter U .

The function B is monotone if a ⊆ b implies B(a) ⊇ B(b), for all a, b ∈ Pfin(I).
The function B is additive if B(a ∪ b) = B(a) ∩B(b), for all a, b ∈ Pfin(I).
We say that C is subordinate to B if C(a) ⊆ B(a), for all a ∈ Pfin(I).

Definition 6
An ultrafilter U over I is good if it is ω-incomplete and for every monotone
function B there is an additive function C subordinate to B.

We refer to Chang and Keisler [2] for a proof that for every infinite set I
there exist good (κ+-good, for κ = |I|) ultrafilters over I.

Theorem 6
Let U be a good ultrafilter over I = Vϑ. Then IST holds in the extended
ultrapower of Vϑ modulo U .

Proof: It remains to prove that Idealization holds. Let P(x1, . . . , xk) be a
statement in the ∈-language. Let h1, . . . , hk ∈ VUϑ .

Assume that for every finite set a ∈ Vϑ

(∃g ∈ VUϑ)(∀f ∈U ka)PUϑ (f, g, h1, . . . , hk).

Let D(a) = {i ∈ I | (∃y ∈ Vϑ)(∀x ∈ a)Pϑ(x, y, h1(i), . . . , hk(i))}. By  Loś
Theorem, D(a) ∈ U .

Let (In)n∈N be such that I0 = I, In+1 ⊆ In and In ∈ U , for all n ∈ N,
and

⋂
n∈N In = ∅. We define B(a) = D(a) ∩ In where n = |a|, and notice that

B(a) ∈ U and the function (B(a) | a ∈ Pfin(Vϑ)) is monotone. Let (C(a) |
a ∈ Pfin(Vϑ)) be an additiva function subordinate to B. For each i ∈ I let
ai = {x ∈ Vϑ | i ∈ C({x}). The set ai is finite, because existence of an infinite
sequence (xn)n∈N of distinct elements of ai would imply i ∈

⋂
j≤n C({xj}) =

C({x0, . . . , xn}) ⊆ In, contradicting
⋂
n∈N In = ∅.

For every i ∈ I we have i ∈ C({x}) for all x ∈ ai. So i ∈
⋂
x∈ai C({x}) =

C(ai) ⊆ B(ai) and we can choose f(i) ∈ Vϑ such that

(∀x ∈ ai)Pϑ(x, f(i), h1(i), . . . , hk(i)).
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We claim that (∀x ∈ Vϑ)PUϑ (kx, f, h1, . . . , hk).
Fix x ∈ Vϑ. By definition, {i ∈ I | x ∈ ai} ⊆ {i ∈ I | Pϑ(x, f(i), h1(i), . . . , hk(i))}.

But {i ∈ I | x ∈ ai} = {i ∈ I | i ∈ C({x})} = C({x}) ∈ U, so

{i ∈ I | Pϑ(x, f(i), h1(i), . . . , hk(i))} ∈ U

and the conclusion follows by  Loś Theorem.
The opposite implication is trivial, because one can prove in IST, without

appeal to Idealization, that all elements of a standard finite set are standard.
�

Theorem 7
IST is conservative over ZFC. This means that, for any statement P in the

∈-language, if IST proves PS, then ZFC proves P.
In particular, if ZFC is consistent, then IST is consistent.

Proof: Suppose that IST proves PS but ZFC does not prove P. Then the
theory ZFC+ = ZFC + ¬P is consistent. Let ZFC+

ϑ be the theory obtained
by adding ¬P to the axioms of ZFCϑ. The proof of Theorem 4 goes through
to show that ZFC+

ϑ is consistent; in this theory ¬Pϑ holds. Then ¬PS holds in
the extended ultrapower of Vϑ modulo a good ultrafilter U . But this extended
ultrapower satisfies IST, hence in particular its consequence PS. This is a
contradiction.

Suppose IST proved a contradiction. Then it would prove every statement,
for example, (∃x)(x 6= x). By conservativity, ZFC would then also prove
(∃x)(x 6= x). �
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3 Repeated ultrapowers.

In this section we carry out a preliminary technical step for the construction of
an interpretation for RIST−: Given an interpretation (VUϑ ,=U ,∈U , S̃) where

IST holds [this is true for S̃ = SU , but we need a more general result], we
construct a new interpretation for IST by taking its ultrapower, and describe
this ultrapower explicitly.

Let U be an ultrafilter over I and V an ultrafilter over J .

Definition 7

(VUϑ)V = {f : dom f = J and ran f ⊆ VUϑ};

For f, g ∈ (VUϑ)V :

f =U,V g ⇔ {j ∈ J | f(j) =U g(j)} ∈ V ;

f ∈U,V g ⇔ {j ∈ J | f(j) ∈U g(j)} ∈ V ;

f ∈ S̃V ⇔ {j ∈ J | f(j) ∈ S̃} ∈ V.

It is an easy exercise to prove  Loś Theorem for this ultrapower.

Theorem 8
Let P(x1, . . . , xk) be a statement in the ∈-S-language. Let PU,Vϑ be obtained

from P by replacing each occurence of =,∈,S by =U,V ,∈U,V , S̃V , respectively,
and restricting all quantifiers to (VUϑ)V .
For all f1, . . . , fk ∈ VUϑ ,

PU,Vϑ (f1, . . . , fk)⇔ {j ∈ J | PUϑ (f1(j), . . . , fk(j))} ∈ V.

Corollary If IST holds in the interpretation (VUϑ ,=U ,∈U , S̃), then IST

holds also in the interpretation ((VUϑ)V ,=U,V ,∈U,V , S̃V ).

Let now P be an ∈-statement. Then one can use  Loś Theorem for the
ultrapower modulo U to write further:

PU,Vϑ (f1, . . . , fk)⇔ {j ∈ J | {i ∈ I | Pϑ(f1(j)(i), . . . , fk(j)(i))} ∈ U} ∈ V.

This equivalence suggests the following definition.

Definition 8
For Z ⊆ J × I let

Z ∈ V ⊗ U ⇔ {j ∈ J | {i ∈ I | 〈j, i〉 ∈ Z} ∈ U} ∈ V.

Exercise 5 V ⊗ U is an ultrafilter over J × I.
For X ⊆ I, (X × I) ∈ V ⊗ U ⇔ X ∈ V .
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For every f ∈ (VUϑ)V define f̂ ∈ VV⊗Uϑ by f̂(〈j, i〉) = f(j)(i). The mappinĝ is onto VV⊗Uϑ and preserves = and ∈ in the following sense:

f =U,V g ⇔ f̂ =V⊗U ĝ; f ∈U,V g ⇔ f̂ ∈V⊗U ĝ.

Moreover,

f ∈ (SU )V ⇔ {j ∈ J | f(j) ∈ SU} ∈ V ⇔ (∃g ∈ VVϑ )({j ∈ J | f(j) =U kU,g(j)} ∈ V )⇔

⇔ (∃g ∈ VVϑ )(f =V⊗U kV,U,g),

where kV,U,g ∈ VV⊗U is defined by kV,U,g(〈j, i〉) = g(j)(i).

We let

SV,V⊗U = {h ∈ VV⊗U | (∃g ∈ VVϑ )({〈j, i〉 ∈ J × I | h(〈j, i〉) = g(j)} ∈ V ⊗ U}).

We summarize these observations.

Theorem 9
The mapping ̂ is an isomorphism of the interpretations

((VUϑ)V ,=U,V ,∈U,V , (SU )V ) and (VV⊗Uϑ ,=V⊗U ,∈V⊗U ,SV,V⊗U ).

Corollary If U is a good ultrafilter over I = Vϑ, then IST holds in the
interpretation (VV⊗Uϑ ,=V⊗U ,∈V⊗U ,SV,V⊗U ).

For the construction in the next section we need a generalization of Theo-
rem 6.

Theorem 10
If U is a good ultrafilter over I = Vϑ, then IST holds in the interpretation

(VU⊗Vϑ ,=U⊗V ,∈U⊗V ,SU⊗V ).

Proof: All axioms of IST except Idealization hold on account of Theorem 2.
As in the discussion preceding Theorem 9, but with the roles of U and V

exchanged, we establish an isomorphism ̂ of the interpretation ((VVϑ )U ,=V,U

,∈V,U ,S) and the interpretation (VU⊗Vϑ ,=U⊗V ,∈U⊗V ,SU⊗V ); now f̂(〈i, j〉) =
f(i)(j). Here, by definition, f ∈ S iff there exists x ∈ Vϑ such that {i ∈ I |
f(i) =V kV,x} ∈ U , i.e., {〈i, j〉 ∈ I × J | f̂(i, j) = x} ∈ U ⊗ V ; so we have

f ∈ S⇔ f̂ ∈ SU⊗V .
It now suffices to prove that Idealization holds in ((VVϑ )U ,=V,U ,∈V,U ,S). To

do that, we repeat the argument from the proof of Theorem 6, with Vϑ replaced
by VVϑ . We indicate the main changes.

The parameters h1, . . . , hk are now in (VVϑ )U . We assume that for every
finite set a ∈ Vϑ

(∃f ∈ (VVϑ )U )(∀x ∈ a)PV,Uϑ (kV,U,x, f, h1, . . . , hk)

and let Ea = {i ∈ I | (∃y ∈ VVϑ )(∀x ∈ a)PVϑ (kV,x, y, h1(i), . . . , hk(i))}. The
argument produces a function f ∈ (VVϑ )U such that for every x ∈ Vϑ

{i ∈ I | PVϑ (kV,x, f(i), h1(i), . . . , hk(i))} ∈ U,

and the conclusion (∀x ∈ Vϑ)PV,Uϑ (kV,U,x, f, h1, . . . , hk) follows by  Loś Theorem.
�
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4 Relative consistency of RIST−.

Throughout this section we work in ZFCϑ and assume that U is a good ultra-
filter over I = Vϑ.

Definition 9
Define by recursion:

(1) U0 = {{∅}}; this is the principal ultrafilter over I0 = {∅};

(2) U1 = U ; I1 = I;

(3) Un+1 = Un ⊗ U ; this is an ultrafilter over In × I = In+1.

Exercise 6 If n = k + `, then Un = Uk ⊗ U`.
(Actually, this is true only up to the isomorphism that identifies In with Ik×I`,
but we ignore this pedantic distinction.)

Let Vnϑ = VUn

ϑ , and for f, g ∈ Vnϑ let f =n g iff f =Un
g, f ∈n g iff f ∈Un

g.
For k < n let Sk,n = SUk,Un

= {f ∈ Vnϑ | (∃g ∈ Vkϑ)(f =n kUk,Un−k,g)}.

Theorem 11
IST holds in the interpretation (Vnϑ,=n,∈n,Sk,n), for each n > k.

Proof: For k = 0 this is just the interpretation (VU⊗V ,=U⊗V ,∈U⊗V ,SU⊗V )
from Theorem 10, where one lets V = Un−1, so that U ⊗ V = Un.

By the Corollary to Theorem 8, IST holds also in the interpretation
((VUn

ϑ )V ,=Un,V ,∈Un,V , (S0,n)V ). For k > 0 we now take V = Uk and define
the mapping ̂ by

f̂(〈i0, . . . , ik−1, ik, . . . , ik+n−1〉 = f(i0, . . . , ik−1)(ik, . . . , ik+n−1),

for f ∈ (VUn

ϑ )V . As in the discussion preceding Theorem 9, one shows easily that̂ is an isomorphism of this interpretation and the interpretation (Vk+n
ϑ ,=k+n

,∈k+n,Sk,k+n), which therefore also satisfies IST. �

Definition 10
For n ≤ m ∈ N and f ∈ Vnϑ let in,m(f) ∈ Vmϑ be defined by
in,m(f)(〈x0, . . . , xm−1〉) = f(〈x0, . . . , xn−1〉).
[For n = 0, by definition 〈x0, . . . , xn−1〉 = ∅.]

We finally let V∗ϑ =
⋃
n∈N Vnϑ, and for f, g ∈ V∗ϑ let

f =∗ g iff f ∈ Vnϑ, g ∈ Vmϑ and in,k(f) =k im,k(g) for k = max{n,m};
f ∈∗ g iff f ∈ Vnϑ, g ∈ Vmϑ and in,k(f) ∈k im,k(g) for k = max{n,m};
f ∈ S∗n iff (∃g ∈ Vnϑ)(f =∗ g).

Exercise 7 Prove that f =∗ g iff f ∈ Vnϑ, g ∈ Vmϑ and in,k(f) =k im,k(g)
holds for all k ≥ max{n,m}; similarly for f ∈∗ g.

We note that Vnϑ ⊆ S∗n, and conversely, for every f ∈ S∗n there exists g ∈ Vnϑ
such that f =∗ g. It is easy to prove from this that

13



IST holds in the interpretation (S∗n,=∗,∈∗,S∗k), for every k < n.

We leave this as an exercise. [The identity mapping Id : f 7→ f is essentially
an isomorphism of the interpretation (Vnϑ,=n,∈n,Sk,n), where IST holds, and
the interpretation (S∗n,=∗,∈∗,S∗k), if an allowance is made for equality in both
interpretations being only a congruence. (By taking equivalence classes modulo
=n and =∗, respectively, one can convert Id into a genuine isomorphism, but it
seems simpler to argue directly.)]

Definition 11
For f ∈ V∗ϑ, let n(f) be the least n ∈ N for which f ∈ S∗n.
For f, g ∈ V∗ϑ we define: f v∗ g iff n(f) ≤ n(g).

The quadruple (V∗ϑ,=∗,∈∗,v∗) is an interpretation for the ∈-v-language.
For any statement P in this language, P∗ is the statement obtained from P by
replacing all occurrences of =, ∈ and v by =∗, ∈∗ and v∗, respectively, and
restricting all quantifiers to V∗ϑ. See the Appendix for the axioms of RIST−.

Theorem 12
RIST− holds in the interpretation (V∗ϑ,=∗,∈∗,v∗).

Proof: Relativization is trivial and left as an exercise [for (4), note that 0 is
interpreted by the constant function h on I0 with value 0, and n(h) = 0].

Note also that {g ∈ V∗ϑ | g v∗ f} = {g ∈ V∗ϑ | n(g) ≤ n(f)} = S∗n(f). Thus

the universes Sf of RIST− are interpreted as S∗n(f). It remains only to prove
that ZFC in S, Transfer, Idealization and Inner Standardization hold in the
interpretation (V∗ϑ,=∗,∈∗,S∗n), for every n ∈ N.

ZFC in S:
If P is a axiom of ZFC, then PS∗n holds because P holds in (S∗n,=∗,∈∗).

Transfer:
Let P be a statement in the ∈-language. We begin by observing that

(∀n < m)(∀f1, . . . , fk ∈ S∗n)(PS∗n(f1, . . . , fk)⇔ PS∗m(f1, . . . , fk));

this is just Transfer in the interpretation (S∗m,=∗,∈∗,S∗n). We prove by induc-
tion on the complexity of statements:

(∀n)(∀f1, . . . , fk ∈ S∗n)(PS∗n(f1, . . . , fk)⇔ P∗(f1, . . . , fk)).

For atomic statements of the form f1 = f2 and f1 ∈ f2 this is trivial. If the
claim is true for P1 and P2, then, also trivially, it is true for P1 ∧ P2 and ¬P1.

So consider P of the form (∃g)Q(g, f1, . . . , fk). If (∃g ∈ S∗n)QS∗n(g, f1, . . . , fk),
fix such g. Then QS∗n(g, f1, . . . , fk) and, by the inductive assumption,
Q∗(g, f1, . . . , fk); hence also (∃g ∈ V∗ϑ)Q∗(g, f1, . . . , fk).

Conversely, suppose that (∃g ∈ V∗ϑ)Q∗(g, f1, . . . , fk). Fix such g; wlog.
g ∈ S∗m for m > n. By the inductive assumption, QS∗m(g, f1, . . . , fk), hence
PS∗m(f1, . . . , fk) and PS∗n(f1, . . . , fk), by the above observation.
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Idealization:
Let P(x, y, x1, . . . , xk) be an ∈-statement.
Fix m > n so that h1, . . . , hk ∈ S∗m; we write h for h1, . . . , hk. Suppose that

(∀ finite a)(∃x)(∀y ∈ a)P(x, y, h)

holds in (V∗ϑ,=∗,∈∗,S∗n) and let a ∈ S∗n be finite in the sense of the interpre-
tation. The statement (∃x)(∀y ∈ a)P(x, y,A, h) has parameters in S∗m, so by
Transfer it holds in S∗m. But Idealization holds in (S∗m,=∗,∈∗,S∗n), so there
exists x ∈ S∗m such that for every y ∈ S∗n we have PS∗m(x, y, h) and hence also
P∗(x, y, h). This establishes the conclusion of Idealization. The other direction
is trivial.

Inner Standardization: Let f ∈ V∗ϑ and take m > n such that f ∈ S∗m. By
Standardization in (S∗m,=∗,∈∗,S∗n) there is g ∈ S∗n such that for all h ∈ S∗n we
have h ∈∗ g ⇔ h ∈∗ f . This is precisely what Inner Standardization in the
interpretation (V∗ϑ,=∗,∈∗,S∗n) requires.

�

Corollary
RIST− is a conservative extension of ZFC.

Proof: Argue as in the proof of Theorem 7. �
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5 RBST

Here we finally reach the objective of these notes and establish conservativity
of RBST over ZFC. To this purpose we obtain an interpretation of RBST in
RIST−.

In this section we work in RIST−. We recall that Sp = {x | x v p}; if
p v q, then Sp ⊆ Sq. The universe of standard sets S0 = {x | x v 0} =

⋂
p Sp.

We also write S∞ = {x | x = x} =
⋃
p Sp for the universe of all sets.

Let P(x̄) be an ∈-statement (x̄ is shorthand for a list x1, . . . , xk). We write
Pp for PSp ; of course, P∞ is (equivalent to) just P. The Transfer Principle in
RIST− implies:

For all p v q and all x̄ ∈ Sp : Pp(x̄)⇔ P(x̄)⇔ Pq(x̄).

Definition 12
B = {x | (∃y ∈ S0)(x ∈ y)}. If x ∈ B, we say that x is bounded.

Theorem 13
x ∈ B iff (∃y ∈ S0)(x ⊆ y).

Proof: If x ∈ y for y ∈ S0, then x ⊆ ∪y and ∪y ∈ S0.
If x ⊆ y and y ∈ S0, then x ∈ P(y) (the power set of y) and P(y) ∈ S0. �

We consider the interpretation (B,=,∈,v) of the ∈-v-language in RIST−

(it is understood that the relations are restricted to B).
Let Sbp = Sp ∩B; note that Sb0 = S0 and Sb∞ = B.

If P is an ∈-statement, we write Pbp for PSb
p ; Pb is Pb∞, i.e., PB.

Theorem 14 (p is a set or p =∞)

(∀x̄ ∈ Sbp)[(∃y ∈ Sp)Pp(x̄, y)→ (∃y ∈ Sbp)Pp(x̄, y)].

Proof: Fix A ∈ S0 such that x̄ ∈ A. Since ZFC holds in Sp,

(∃Z)(∀z̄ ∈ A)[(∃y)P(z̄, y)→ (∃y ∈ Z)P(z̄, y)]

holds in Sp. This is an ∈-statement with the parameter A ∈ S0, so by Transfer
it holds in S0. Fix Z ∈ S0 so that (∀z̄ ∈ A)[(∃y)P(z̄, y) → (∃y ∈ Z)P(z̄, y)]
holds in S0. By Transfer again, it holds in Sp as well. Since x̄ ∈ Sp ∩ A and
(∃y ∈ Sp)Pp(x̄, y), we conclude that (∃y ∈ Sp∩Z)Pp(x̄, y). But Z ∈ S0, so such
y is in B and we have (∃y ∈ Sbp)Pp(x̄, y). �

Theorem 15 (p is a set or p =∞)

(∀x̄ ∈ Sbp)(Pp(x̄)⇔ Pbp(x̄)).

Proof: We proceed by induction on the complexity of the statement. The
only nontrivial step is when P is of the form (∃y)Q(x̄, y), x̄ ∈ Sbp and Pp(x̄)
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holds, that is, (∃y ∈ Sp)Qp(x̄, y). Here we use Theoerm 14 to conclude that
(∃y ∈ Sbp)Qp(x̄, y). Fix such y ∈ Sbp. By the inductive assumption, Qbp(x̄, y)

holds, so (∃y ∈ Sbp)Qbp(x̄, y), i.e., Pbp(x̄). �

We have all the ingredients for the proof of the final theorem.

Theorem 16
RBST holds in the interpretation (B,=,∈,v).

Proof: Relativization is inherited from RIST−.

ZFC in Sbp follows from ZFC in Sp and Theorem 15.

Boundedness follows immediately from the definition of B and the fact that
Sb0 ⊆ Sbp.

Transfer:
Let x̄ ∈ Sbp. Then Pbp(x̄)⇔ Pp(x̄) by Theorem 15, Pp(x̄)⇔ P(x̄) by Transfer

in RIST−, and P(x̄)⇔ Pb(x̄), again by Theorem 15.

Inner Standardization:
Let x ∈ B; fix P ∈ Sb0 such that x ⊆ P . By Inner Standardization in

RIST−, there is y ∈ Sp such that (∀z ∈ Sp)(z ∈ y ⇔ z ∈ x). Let ỹ = y ∩ P .
Then also (∀z ∈ Sp)(z ∈ ỹ ⇔ z ∈ x), and ỹ ∈ B.

Special Idealization:
This is inherited from RIST−: If B ∈ B and y ∈ B, then y ∈ B.

We show in the Appendix (Theorem 17) that Inner Standardization and
Special Idealization imply the full versions of Standardization and Bounded
Idealization, respectively. This completes the proof of the theorem.

�

Corollary
RBST is a conservative extension of ZFC.
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Appendix

We let BST− denote an ostensibly weaker theory obtained from BST by replac-
ing the axioms of Standardization and Bounded Idealization by, respectively,

Inner Standardization: (∀x)(∃Sy)(∀Sz)(z ∈ y ⇔ z ∈ x).

Special Idealization:

For all standard A,B and all R ⊆ A×B,

(∀Sa ∈ Pfin(A))(∃y ∈ B)(∀x ∈ a)(〈x, y〉 ∈ R)⇔ (∃y ∈ B)(∀Sx ∈ A)(〈x, y〉 ∈ R).

Theorem 17
BST− implies BST.

We begin by establishing the following very important result in BST−. The
variable U always denotes an ultrafilter over I =

⋃
U . We write xMU (x is in

the monad of U) for the statement

(∀SX)(X ∈ U → x ∈ X).

Theorem 18
(Reduction Theorem)
There is an effective procedure that assigns to each ∈-S-formula P(x1, . . . , xk)
an ∈-formula Ps(U) such that, for all x1, . . . , xk and all standard U with
〈x1, . . . , xk〉MU we have P(x1, . . . , xk)⇔ Ps(U).
In particular,

P(x1, . . . , xk)⇔ (∃stU)(〈x1, . . . , xk〉MU ∧ Ps(U))⇔
(∀stU)(〈x1, . . . , xk〉MU → Ps(U)).

The first result of this nature was proved by Nelson [9] for IST (Reduction
Algorithm). Kanovei adapted it to BST (see [7]). The formulation given here is
due to Andreev, who proved it in BST with a weak version of Standardization.
The proof below is from [1].

Proof: Let P(x1, . . . , xk) be an ∈-S-statement where all free variables are
among x1, . . . , xk. Renaming the bound variables if necessary, we can assume
that all bound variables are distinct from all free variables and from each other
(ie, if Q1y1 and Q2y2 are distinct occurences of quantifiers in P, then y1 and y2

are distinct variables).
We proceed by induction on the complexity of P. Let 1 ≤ i, j ≤ k.
(xi ∈ xj)s is the statement “{〈a1, . . . , ak〉 ∈ I =

⋃
U : ai ∈ aj} ∈ U”;

(xi = xj)
s is the statement “{〈a1, . . . , ak〉 ∈ I =

⋃
U : ai = aj} ∈ U”;

(S(xi))
s is “(∃a) {〈a1, . . . , ak〉 ∈ I =

⋃
U : ai = a} ∈ U”;

(P ∧Q)s is Ps ∧Qs; (¬P)s is ¬Ps;
((∃y)Q(x1, . . . , xk, y))s is (∃V ) (π[V ] = U ∧ Qs(V )), where V is an ultra-

filter over I × J =
⋃
V and π : I × J → I is the projection mapping 〈i, j〉 7→ i;

π[V ] = U means that (∀X ⊆ I)(X ∈ U ⇔ X × J ∈ V ).
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We verify the claim of the theorem in the last case. Let U be a standard
ultrafilter over I and x1, . . . , xk MU ; note that 〈x1, . . . , xk〉 ∈ I.

Assume that (∃y)Q(x1, . . . , xk, y) and fix some y such that Q(x1, . . . , xk, y)
holds. By Boundedness, y ∈ J for some standard J . Let W = {Z ⊆ I × J |
〈〈x1, . . . , xk〉, y〉 ∈ Z}. From Inner Standardization we get a standard V such
that Z ∈ V ⇔ Z ∈ W , for all standard Z ⊆ I × J . It is easy to check that V
is an ultrafilter over I × J , π[V ] = U , and 〈〈x1, . . . , xk〉, y〉MV . Hence Qs(V )
holds by the inductive assumption.

For the converse assume that there exists V such that π[V ] = U ∧ Qs(V );
by Transfer, we can take V to be standard. Let {Z1, . . . , Zn} be a standard
finite subset of V and Z =

⋂
1≤i≤n Zi; note Z ∈ V and Z is standard. As

π(Z) ∈ U (exercise), we have 〈x1, . . . , xk〉 ∈ π(Z), so there exists some y ∈ J
such that 〈〈x1, . . . , xk〉, y〉 ∈ Z. Using Special Idealization we obtain y ∈ J such
that 〈〈x1, . . . , xk〉, y〉 ∈ Z holds for all standard Z ∈ V . [Let A = V , B = J and
R(Z, y) ⇔ 〈〈x1, . . . , xk〉, y〉 ∈ Z.] This just means that 〈〈x1, . . . , xk〉, y〉 MV .
By the inductive assumption, it now follows from Qs(V ) that Q(x1, . . . , xk, y)
holds. Hence (∃y)Q(x1, . . . , xk, y) holds. �

We can now prove Standardization and Bounded Idealization in BST−, and
thus complete the proof of Theorem 17.

Theorem 19
BST− proves Standardization.

Proof: Let Q(z, x, x̄) be an ∈-S- statement. By the Reduction Theorem, there
is an ∈-statement Qs(U) such that Q(z, x, x̄)⇔ (∃stU)(〈z, x, x̄〉MU ∧ Qs(U)).
We fix a standard ultrafilter U0 such that 〈x, x̄〉 MU0. Define the projection
σ by 〈z, x, x̄〉 7→ 〈x, x̄〉. It is easy to verify that, for any standard z and U ,
〈z, x, x̄〉MU ⇔ (U0 ∩ σ[U ]) is an ultrafilter ∧{〈w, v, v〉 ∈

⋃
U : w = z} ∈ U .

Using Transfer we have that, for standard z, Q(z, x, x̄) ⇔ (∃U)[(U0 ∩ σ[U ]) is
an ultrafilter ∧{〈w, v, v〉 ∈

⋃
U : w = z} ∈ U ∧ Qs(U)], and the statement on

the right side is an ∈-statement (with a standard parameter U0).
Let x ∈ A where A is standard. Given P(z, x, x̄), let Q(z, x, x̄) be the

statement z ∈ x ∧ P(z, x, x̄). By the Axiom of Separation of ZFC, the set of
all z ∈ A that satisfy the equivalent ∈-statement exists and is standard. It has
the property required by Standardization. �

Theorem 20
BST− proves Bounded Idealization.

Proof: Assume that the left side holds. Axiom of Choice implies the existence
of a set B such that, for every a ∈ Pfin(A), if (∃y)(∀x ∈ a)P(x, y,A, x̄), then
(∃y ∈ B)(∀x ∈ a) P(x, y,A, x̄); by Boundedness, we can take B to be standard.
Define R := {〈x, y〉 ∈ A × B : P(x, y,A, x̄)} and apply Special Idealization to
obtain the right side.

The converse implication is trivial, because if a ⊆ A is standard and finite,
then all x ∈ a are standard elements of A. �
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